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Abstract 

The pace of life (POL) is shaped by a complex interplay between genetic and environmental factors, influencing 
growth, maturation, and lifespan across species. The Hippo signaling pathway, a key regulator of organ size and cel-
lular homeostasis, has emerged as a central integrator of environmental cues that modulate POL traits. In this review, 
we explore how the Hippo pathway links environmental factors—such as temperature fluctuations and dietary 
energy availability—to molecular mechanisms governing metabolic balance, hormonal signaling, and reproductive 
timing. Specifically, we highlight the regulatory interactions between the Hippo pathway and metabolic sensors 
(AMPK, mTOR, SIRT1 and DLK1-Notch), as well as hormonal signals (IGF-1, kisspeptin, leptin, cortisol, thyroid and sex 
steroids), which together orchestrate key life-history traits, including growth rates, lifespan and sexual maturation, 
with a particular emphasis on their role in reproductive timing. Furthermore, we consider its role as a potential coor-
dinator of POL-related molecular processes, such as telomere dynamics and epigenetic mechanisms, within a broader 
regulatory network. By integrating insights from molecular biology and eco-evolutionary perspectives, we propose 
future directions to dissect the Hippo pathway’s role in POL regulation across taxa. Understanding these interactions 
will provide new perspectives on how organisms adaptively adjust life-history strategies in response to environmental 
variability.

Background
Pace-of-life (POL) theory is a central framework in eco-
evolutionary studies, describing how organisms allo-
cate energy and resources toward growth, reproduction, 
and survival in response to ecological and evolutionary 
pressures [1–4]. Species and individuals within popula-
tions exhibit variation in POL strategies, ranging from 
fast-paced life histories characterized by rapid growth, 

early reproduction, and short lifespans to slow-paced 
strategies with delayed reproduction, extended longev-
ity, and increased investment in somatic maintenance [4, 
5]. Understanding POL traits is important for decipher-
ing how organisms adapt to environmental challenges, 
including resource availability and climate variability 
[6, 7]. These life-history strategies influence population 
dynamics, species interactions, and ecosystem function-
ing, making POL a key concept in evolutionary ecol-
ogy and conservation biology [1, 7]. However, while the 
ecological consequences of POL variation are well rec-
ognized, the underlying molecular mechanisms that 
regulate these traits remain less understood, particularly 
how they integrate environmental signals to influence 
life-history trajectories [2, 8]. Among POL traits, the tim-
ing of sexual maturation is particularly significant, as it 
determines the onset of reproductive capacity and shapes 
fitness outcomes [4, 9–11]. Earlier sexual maturation 
is often associated with a faster POL, whereas delayed 
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maturation aligns with a slower life-history strategy [9, 
11, 12]. The timing of sexual maturation is highly plastic 
and sensitive to environmental conditions such as nutri-
tional status, temperature, and stress exposure [12–15]. 
Shifts in reproductive timing can have profound eco-
evolutionary implications, affecting population growth 
rates, competitive interactions, and species’resilience 
to environmental change. Despite its importance, the 
molecular regulators linking external cues to the precise 
control of maturation timing remain incompletely char-
acterized, highlighting an important knowledge gap in 
POL research.

Several molecular mechanisms regulate POL traits, 
many of which also influence sexual maturation tim-
ing. Growth and metabolic pathways, such as insulin-
like growth factor (IGF), mTOR, AMPK, leptin, and 
DLK1-Notch signaling, integrate energy availability with 
developmental progression [16–19]. Hormonal signals, 
including glucocorticoid receptor (GR), estrogen receptor 
(ER), and androgen receptor (AR), further regulate POL 
traits by mediating stress responses and reproductive 
axis activation [20, 21] Furthermore, senescence-related 
mechanisms, such as telomere length (TL) shortening, 
Sirtuin 1 (SIRT1), and DNA methylation, contribute to 
POL variation by balancing somatic maintenance and 
reproductive investment [22, 23]. While these pathways 
are well studied, how they collectively respond to envi-
ronmental factors remains poorly understood. Although 
diet and temperature are known to influence POL traits 
and reproductive timing [14, 24–28], the molecular inter-
mediaries that translate these environmental cues into 
biological responses remain underexplored. Identifying 
pathways that integrate environmental signals with POL-
regulating mechanisms is important for understanding 
how organisms adjust life-history strategies in response 
to ecological pressures.

The Hippo signaling pathway, a key regulator of cell 
proliferation, apoptosis, and organ size [29, 30], is a 
strong candidate for a molecular pathway that could link 
POL related traits (e.g., timing of sexual maturation) 
to environmental stressors (e.g., dietary and thermal 
changes). Growing evidence suggests regulatory asso-
ciations between various POL-related molecular mecha-
nisms (e.g., telomere dynamics, growth factor, metabolic 
sensing and stress-related signals) and the Hippo path-
way, supported by recent discoveries across various bio-
logical fields (discussed in sections below). These parallel 
findings highlight the need for future research to explore 
how these processes may intersect in shared biologi-
cal roles. Notably, the links between the POL regulating 
mechanisms and the Hippo pathway appear particularly 
relevant in the context of sexual maturation and environ-
mental factors influencing maturity (see sections 2 and 3 

below). Some of the observed connections between these 
mechanisms and the Hippo pathway can be categorized 
into body size regulation, sexual maturation timing, adi-
posity and energy allocation, responses to thermal stress, 
and shared molecular interactions within these processes. 
For instance, telomere length (TL) is often inversely asso-
ciated with body mass, suggesting that shorter TL may 
have co-evolved in larger, longer-lived species prob-
ably as a mechanism to suppress cancer, known as Peto’s 
Paradox [31]. Other POL-related mechanisms such as 
AMPK, IGF- 1 and mTOR signals are also indicated in 
Peto’s Paradox [32–35]. Interestingly, the Hippo pathway 
has been already proposed as a potential explanation for 
Peto’s Paradox [34, 36]. The onset of sexual maturation is 
associated with function of these mechanisms and Hippo 
pathway activity not only along hypothalamo-pituitary 
gonadal (HPG) axis [37–40, 42, 43] but also in other tis-
sues affecting sexual maturation such as adipose [41, 44–
47]. Here, we provide an overview of recently reported 
associations of relevance and discuss the ecological and 
molecular aspects of each interaction, with the Hippo 
pathway playing a central role. We briefly summarize 
recent findings on molecular links between some of these 
POL-related mechanisms and the Hippo pathway, with a 
particular focus on the regulation of sexual maturation 
timing as an example of a POL-related trait. Overall, we 
hypothesize that the Hippo pathway can serve as a poten-
tial molecular link between POL and environmental 
stressors, such as dietary and thermal changes.

Role of the Hippo pathway in sexual maturation
Major components of the Hippo pathway
YAP (Yes-associated protein) and TAZ (transcriptional 
co-activator with PDZ-binding motif ) are integral in 
controlling developmental organ size through their regu-
lation of cellular proliferation and organ growth and ini-
tially discovered as components of the Hippo signaling 
pathway in Drosophila (Pan, 2007). As transcriptional 
co-activators, YAP/TAZ not only closely interact with the 
TEAD family of transcription factors but also engage in 
extensive regulatory crosstalk with other signaling path-
ways [30]. Within the Hippo pathway, kinase cascades 
like LATS1/2-MOB1 A/B and MST1/2-SAV1 are respon-
sible for the phosphorylation of YAP/TAZ, which regu-
lates their subcellular localization and stability [30]. This 
regulatory mechanism is essential for maintaining tissue 
homeostasis but also impacts the development and func-
tion of various organs (e.g. in reproductive tissues). SAV1 
(Salvador homolog 1) and MOB1 A/B (MOB kinase acti-
vator 1 A and 1B) are scaffolding proteins that facilitate 
the activation of LATS1/2 by MST1/2. External stimuli, 
including soluble factors like epidermal growth factor 
family proteins and G protein-coupled receptor signals, 
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can modulate YAP/TAZ activity via the Hippo pathway 
[30], highlighting the dynamic interplay between exter-
nal signals and intracellular signaling mechanisms. Other 
transcription co-factors namely the vestigial-like (VGLL) 
family of co-factors, which also interact with TEADs, 
are key components in the Hippo signaling pathway as 
well [48]. In general, VGLLs compete with YAP/TAZ for 
binding to TEADs, thus acting as a negative regulator of 
YAP/TAZ-mediated transcriptional activation. Among 
VGLL co-factors, VGLL3 is the member with most impli-
cations in regulation of sexual maturation [48].

Hippo pathway in sexual maturation
The Hippo signaling pathway plays a key role in sexual 
maturation across animals [43, 49–51]. Through its 
downstream effectors YAP, TAZ, and VGLL co-factors 
(e.g., VGLL3), it influences the HPG axis, the central 
regulator of sexual development [43, 51, 52]. In mam-
mals, YAP and TAZ modulate GnRH expression in the 
hypothalamus, affecting pituitary hormone release and 
gonadal function [43]. VGLL3 has been linked to puber-
tal timing and reproductive organ development in both 
mammals [53–56] and fish [39, 40, 52, 57, 58]. Beyond 
the HPG axis, the Hippo pathway regulates sexual matu-
ration and reproductive capacity across species. Studies 
in Drosophila link it to germline stem cell proliferation 
and differentiation, essential for fertility [59], while in 
mammals, YAP/TAZ disruptions are associated with 
gonadal abnormalities [49, 51]. Other Hippo compo-
nents, including MST1/2, LATS1/2 kinases, SAV1, and 
MOB1 A/B, further contribute to reproductive develop-
ment and maturation across taxa [49] (see a summary of 
Hippo pathway role in sexual maturation in Figure 1).

Hippo pathway mediated environmental effects 
on sexual maturation
Hippo pathway involvement in diet‑induced sexual 
maturation and its metabolic control
In the human population, obesity induced by a high-fat 
diet (HFD) is increasingly recognized as a leading cause 
of precocious puberty [60–62]. In female mice, postnatal 
feeding with HFD can even induce precocious puberty 
independent of body weight and body fat [63]. The HFD-
induced precocious puberty in mice has been associated 
with changes in neural development and behaviors [64]. 
A recent study in rat also revealed that postnatal feeding 
with high-glucose diet (HGD) and HFD can both lead to 
precocious puberty [65].

Over the past decade, the crucial role of the Hippo 
signaling pathway in cellular and whole-body metabo-
lism has emerged. Dysregulation of this pathway is 
linked to metabolic disorders like obesity, diabetes, and 
fatty liver disease. Recent studies highlight the Hippo 

pathway’s critical role in regulating diet-induced obe-
sity and its importance in responding to dietary changes 
[66]. For example, high-fat diet (HFD) induced obesity 
in mice found to be YAP/TAZ dependent [67]. Further-
more, HFD-induced obesity in mice causes hypertrophic 
adipocytes and this process has been recently found to 
be dependent on YAP/TAZ activation as well [68]. In 
human, obesity in young adults has been linked to tran-
scriptional changes in upstream regulators of the Hippo 
pathway in adipose tissue. A low-calorie diet can enhance 
adipogenic capability by modulating these Hippo com-
ponents [69]. The Hippo pathway is also recognized as 
a regulator of adipocyte behavior [70]. For instance, it 
was found that adipocytes lacking Lats1/2 reverted to a 
progenitor state and while their adipocyte characteris-
tics were reduced, their tissue remodeling abilities were 
enhanced [70]. In mammals, YAP mediated Hippo sign-
aling is considered as stimulator of terminal stage of 
adipocyte differentiation [71], whereas Vgll3 has been 
already known as a potent inhibitor of terminal stage of 

Figure 1. The Hippo pathway-mediated regulatory links 
between sexual maturation, and two related environmental stressors. 
To predict these regulatory connections and their downstream 
outcomes, the Hippo pathway is considered as a central player. The 
green and red arrows indicate regulatory induction and inhibition, 
respectively
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adipocyte differentiation [72]. Vgll3 also regulates lipid 
droplet storage in the adipocytes [73]. In obese mice, 
disrupting Yap led to inefficient fatty acid oxidation 
and lipid-related toxicity, whereas, augmenting Yap lev-
els boosted energy expenditure and reduced adiposity 
in adult skeletal muscle [74]. In Atlantic salmon, vgll3-
dependent changes are also observed for adipose tissue 
transcriptional profile of Hippo pathway components 
and muscle lipid profiles [47, 75].

The role of Vgll3 in pubertal timing is conserved 
between humans and fish [76, 77], with vgll3 explaining 
over 39% of age-at-maturity variation in Atlantic salmon 
[78, 79]. In this species, its early maturation allele induces 
HPG axis genes before gonadal maturation [39, 40]. In 
humans, VGLL3 is one of > 100 genes that explain 2.7% 
of the variation in ache at menarche [77], indicating a 
conserved role, but a much smaller effect size. In mice, 
HFD-induced precocious puberty upregulates Lin28, a 
key regulator of GnRH expression and energy balance 
[80–82]. Lin28 inhibits the Hippo pathway while activat-
ing YAP, which in turn induces Lin28 transcription, cre-
ating a feedback loop [83–85]. Lin28’s role in HPG axis 
regulation is conserved across vertebrates, including 
mice, humans, and fish [86–88]. These findings suggest 
the Hippo pathway acts as a conserved molecular link 
between diet-related metabolic changes and sexual matu-
ration (Figure 1).

Hippo pathway involvement in thermal control of sexual 
maturation
The direct evidence linking thermal regulation of age at 
maturity in mammals is limited, likely due to the fact that 
thermal effects are less important in endotherms, which 
regulate their body temperature internally, reducing the 
direct influence of external temperature on physiological 
and developmental processes. However, several studies of 
various mammalian species have shown that exposure to 
different temperature levels can affect the onset of sexual 
maturation through changes in mechanisms involving 
the development of reproductive organs [89–91], regula-
tion of energy balance [92] and modulation of photoperi-
odic responses [93]. Unlike mammals, many studies in 
fish have investigated the direct effects of temperature on 
the onset of sexual maturation [94–98]. In addition to the 
abovementioned mechanisms in mammals, the thermal 
regulation of sexual maturation in fish can act through 
multiple layers of the HPG axis [97, 99]. Surprisingly 
though, little is still known about the detailed molecu-
lar processes mediating temperature effects on sexual 
maturation.

A recent study proposed an additional role for the 
Hippo pathway in various human cell types, whereby 
the effects of heat stress are mediated on the heat 

shock transcriptome through activation of YAP/TAZ 
and inhibition of LATS kinases [100]. This unexpected 
discovery not only revealed a previously unknown 
mechanism of Hippo regulation by heat stress but also 
demonstrated that the Hippo pathway’s response to 
heat precedes the other already known temperature-
responsive pathways [100]. Another exciting discovery 
found that molecular processes of cold temperature 
tolerance in mammals, which require complex ther-
moregulation in brown adipose tissue (so called beige 
adipogenesis), is directly dependent on YAP/TAZ 
co-transcriptional activity [101]. These discoveries 
in mammalian cells suggest an emerging critical role 
for the Hippo pathway in adaptation to both cold and 
warm environments.

Although, at the organismal level, studies demonstrat-
ing Hippo-mediated adaptation to thermal changes are 
very limited in mammals, such a thermal adaptive role 
for the Hippo pathway has been already suggested in a 
variety of invertebrate species [102–106]. For instance, 
one of the earliest studies to identify a genomic asso-
ciation between the Hippo pathway and adaptation 
to colder temperatures was conducted on honey bees 
(Apis mellifera), a species known for its high sensitiv-
ity to temperature changes [104]. Interestingly, a popu-
lation genomics study revealed that small hive beetles 
(Aethina tumidahas), a parasite of bee nests, identified 
signals of local adaptation to various temperature gra-
dients, with genes of the Hippo pathway also identified 
[102]. Further, in two congeneric oysters (Crassostrea 
spp.), adaptation to increasing temperature is a critical 
aquaculture trait, strong enrichment of the Hippo path-
way during adaptive response to thermal stress (i.e. dif-
ferential expression of genes encoding Hippo pathway 
components in response to increased temperature) was 
reported [106].

In vertebrates, several studies have implicated the 
Hippo pathway as being involved in mediating adaptive 
responses to thermal changes. For instance, in indig-
enous chicken breeds from different tropical climate 
regions (Gallus gallus spadiceus), genomic analyses for 
signatures of selection and genes involved in adaptation 
to high temperature identified upstream regulators of 
the Hippo pathway among the main candidates [107]. In 
giant pandas (Ailuropoda melanoleuca), a study identi-
fied a possible relationship between polymorphism in 
genes encoding Hippo pathway components and reduced 
inner organ sizes in the giant panda [108]. Also in pig 
(Sus scrofa), differential regulation of the Hippo pathway 
components has been associated with gene expression 
response to cold temperature in skeletal muscle; which is 
an important thermogenic tissue maintaining body tem-
perature in mammals [109] (See Figure 1 for a summary 
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of Hippo pathway-mediated thermal effects on sexual 
maturation).

Pace‑of‑Life mechanisms involved in sexual 
maturation timing
The POL mechanisms selected here represent key exam-
ples of those involved in or associated with the regula-
tion of sexual maturation timing, particularly those with 
identified crosstalk with the Hippo pathway (Figure  2). 
These mechanisms, spanning metabolic, hormonal, and 
senescence-related regulators, highlight the complex 
molecular interactions influencing reproductive tim-
ing. However, this list is not exhaustive, as it is limited 
to pathways with a direct regulatory connection to the 
Hippo pathway, where the pathway mainly acts upstream 
of them.

Growth and metabolic regulation mechanisms
Insulin‑like growth factor
Insulin-like growth factor 1 (IGF- 1) signaling plays an 
important role in regulating growth, metabolism, and 
life-history traits, making it a key component of POL 

strategies [110–113]. IGF- 1 is a peptide hormone pri-
marily produced in the liver in response to growth hor-
mone (GH) stimulation and is a central mediator of 
somatic growth, energy allocation, and developmental 
timing [11, 114]. Across species, IGF- 1 levels correlate 
with growth rate, body size, and lifespan, with fast-POL 
species typically exhibiting higher IGF- 1 activity, pro-
moting rapid growth and early reproductive investment, 
whereas slow-POL species tend to have lower IGF- 1 
signaling, favoring longevity and delayed reproduction 
[110–113]. IGF- 1 interacts with multiple metabolic and 
endocrine pathways, including mTOR and AMPK, to bal-
ance energy expenditure between growth and mainte-
nance [11, 113]. Furthermore, IGF- 1 plays a direct role 
in regulating the timing of sexual maturation by activat-
ing the HPG axis. It enhances GnRH secretion, increases 
pituitary sensitivity to gonadotropins, and influences 
ovarian and testicular function, thereby linking nutri-
tional status and metabolic cues to reproductive timing 
[115–119]. This regulatory role highlights IGF- 1 as a 
key molecular pathway affected by environmental condi-
tions and regulating POL traits and the onset of sexual 
maturation.

Mammalian target of rapamycin
The mechanistic target of rapamycin (mTOR) signaling 
plays role in coordinating growth, metabolism, and lifes-
pan, making it a key regulator of POL traits [120–123]. 
As a central nutrient and energy sensor, mTOR inte-
grates signals from IGF- 1, AMPK, and cellular energy 
availability to modulate anabolic and catabolic processes 
[11]. Species or individuals with a fast POL strategy are 
likely to exhibit higher mTOR activity, facilitating rapid 
growth, early maturation, and increased reproductive 
investment, while lower mTOR activity can be associated 
with slower development and extended reproductive tim-
ing in species with delayed maturation and longer lifes-
pans [120–124]. Beyond its role in cellular metabolism, 
mTOR can act as an upstream regulator of the HPG axis 
and it exerts its effects primarily through activation of 
kisspeptin neurons, which serve as mediators of puber-
tal onset and reproductive maturation [124–126]. When 
energy availability is high, mTOR activation enhances 
Kiss1 expression, stimulating kisspeptin release, which 
in turn activates GnRH neurons to initiate puberty and 
reproductive function. Conversely, under energy-defi-
cient conditions, reduced mTOR activity suppresses kiss-
peptin expression, leading to delayed sexual maturation 
[124–126]. By integrating nutritional and metabolic cues 
with reproductive axis regulation, mTOR can act as an 
integrator of environmental energy status and the timing 
of sexual maturation.

Figure 2. The POL-related mechanisms with regulatory connections 
with the timing of sexual maturation and the Hippo pathway activity. 
To avoid complexity, the regulatory crosstalk between mechanisms/
signals is not shown; only their connections to the Hippo pathway 
are depicted. The green and red arrows indicate regulatory induction 
and inhibition, respectively
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AMP‑activated protein kinase
AMP-activated protein kinase (AMPK) serves as a fun-
damental energy sensor within cells, maintaining energy 
balance by responding to fluctuations in intracellular 
ATP levels [127]. When energy is scarce, AMPK activa-
tion inhibits anabolic processes and stimulates catabolic 
pathways to restore ATP, thereby influencing growth, 
metabolism, and aging processes [128]. In the context of 
POL strategies, AMPK modulates life-history traits by 
integrating metabolic status with physiological functions 
[11, 129]. Importantly, AMPK plays role in regulating 
the timing of sexual maturation through its interaction 
with the HPG axis [130, 131]. Under conditions of nega-
tive energy balance, such as chronic under-nutrition, 
AMPK activity increases in the hypothalamus, leading 
to the suppression of Kiss1 gene expression in arcuate 
nucleus (ARC) neurons [132]. This reduction in kisspep-
tin production diminishes stimulation of GnRH neurons, 
thereby delaying puberty onset [130, 132]. Conversely, 
inhibition of AMPK in kisspeptin neurons has been 
shown to prevent the delay in puberty caused by under-
nutrition, emphasizing on the role of AMPK in linking 
metabolic cues to reproductive maturation.

Leptin
An adipocyte-derived hormone, leptin, plays a central 
role in the regulation of energy balance and serves as a 
key metabolic signal in coordinating physiological pro-
cesses relevant to POL variation [133, 134]. Acting as a 
messenger of nutritional sufficiency, leptin reflects the 
body’s energy stores and communicates this status to 
the brain, particularly the hypothalamus, to influence 
feeding behavior, metabolism, and developmental tim-
ing [134–136]. Across vertebrate species, leptin levels 
are positively correlated with fat mass, and its signaling 
is known to modulate life-history traits such as growth, 
reproductive function, and longevity [137–139]. In fast-
POL individuals or species with greater energy reserves, 
leptin signaling tends to be elevated, supporting early 
growth and reproductive investment [136–138, 140]. 
Importantly, leptin is a key permissive factor for the acti-
vation of the HPG axis, especially during the initiation of 
puberty [140–142]. Experimental studies in rodents and 
fish, and observations in humans with congenital lep-
tin deficiency have demonstrated that insufficient leptin 
impairs the onset of puberty, while leptin administration 
can restore reproductive function [136, 141, 143, 144]. 
Mechanistically, leptin stimulates of GnRH production 
and release and through this, leptin integrates metabolic 
and energetic information with neuroendocrine signals 
to regulate the timing of sexual maturation, making it a 
molecular link between energy storage and reproductive 
maturation [136, 142].

DLK1‑Notch signaling
The DLK1-Notch signaling axis plays a distinctive role in 
developmental regulation and energy metabolism, posi-
tioning it as a relevant pathway in the context of POL 
strategies [145–148]. Delta-like homolog 1 (DLK1) is a 
non-canonical ligand of the Notch signaling pathway, 
widely known for its functions in cell fate determina-
tion, tissue development, and metabolic control [147]. 
DLK1 is expressed in multiple endocrine tissues and has 
been implicated in the modulation of adipogenesis, skel-
etal growth, and neuroendocrine function. Its expression 
patterns and signaling effects suggest a role in mediat-
ing life-history trade-offs between growth, maintenance, 
and reproduction [148–151]. In line with POL theory, 
DLK1 may contribute to fast-life strategies by promoting 
early growth and developmental progression, while also 
influencing energy allocation [148]. Importantly, recent 
studies have identified DLK1 as a regulator of pubertal 
timing, particularly through its action on the hypotha-
lamic control of reproduction [151, 152]. DLK1 appears 
to act upstream of the kisspeptin system, with evidence 
indicating that loss-of-function mutations in DLK1 can 
lead to central precocious puberty in humans [152, 153]. 
This suggests that DLK1 normally functions to restrain 
the onset of sexual maturation, potentially by modulat-
ing kisspeptin neuron activation or Notch-related gene 
networks involved in reproductive timing. Thus, DLK1-
Notch signaling provides a mechanistic link between 
developmental and metabolic pathways and the neuroen-
docrine control of sexual maturation [148], contributing 
to how organisms balance growth and reproduction in 
response to internal and external cues.

Hormonal regulation mechanisms
Estrogen receptor
Estrogen receptor (ER) signaling plays a multifaceted 
role in shaping physiological traits relevant to POL varia-
tion, particularly through its influence on growth, energy 
balance, and reproductive development [8, 154, 155]. 
Estrogens act primarily via two nuclear receptors, ERα 
and ERβ, which function as transcription factors regu-
lating gene expression in target tissues, including the 
brain, bone, adipose tissue, and reproductive organs [154, 
156]. Estrogen signaling has been linked to modulation 
of metabolic activity, skeletal maturation, and somatic 
investment, making it a key hormonal axis in balanc-
ing life-history trade-offs [154]. In the context of repro-
ductive development, ER signaling is important for the 
orchestration of puberty and sexual maturation [157, 
158]. Animal and human studies have demonstrated that 
ERα, in particular, is essential for the proper activation 
of the HPG axis, influencing both the structural devel-
opment and functional responsiveness of hypothalamic 
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neurons involved in reproductive control [157, 159–161]. 
Estrogens modulate the GnRH expression and secretion 
and its deficiencies, whether due to genetic mutations, 
pharmacological blockade, or environmental disruptions, 
are associated with delayed or disrupted pubertal onset, 
showing the importance of this pathway in the timing 
of sexual maturation [159–162]. By integrating signals 
related to internal physiological status and environmental 
conditions, ER pathways help calibrate reproductive tim-
ing in a manner consistent with the organism’s broader 
POL strategy.

Androgen receptor
The androgen receptor (AR), a nuclear hormone receptor 
activated by binding to androgens such as testosterone 
and dihydrotestosterone, plays role in coordinating physi-
ological processes relevant to POL dynamics, particularly 
those linked to growth, metabolism, and reproductive 
development [8, 163, 164]. AR signaling contributes to 
the expression of life-history traits by influencing mus-
cle development, metabolic rate, and tissue differentia-
tion, all of which are critical in determining the trade-offs 
between somatic investment and reproductive effort [8, 
163, 164]. Studies across species indicate that androgen 
action, mediated through AR, is not only essential for the 
development of secondary sexual characteristics but also 
plays a broader regulatory role in the maturation of the 
HPG axis [8, 165, 166]. The AR signaling has been shown 
to influence the timing of puberty by modulating hypo-
thalamic sensitivity and the expression of genes involved 
in reproductive axis activation [167, 168]. For exam-
ple, AR is expressed in hypothalamic neurons, includ-
ing those involved in the GnRH production, and can 
either stimulate or inhibit neuronal circuits that control 
reproductive hormone secretion depending on develop-
mental stage and androgen levels [167, 169, 170]. Disrup-
tion of AR signaling, as seen in androgen insensitivity 
syndromes or genetic knockout models, often results in 
delayed or disordered pubertal progression [164, 171]. 
These findings underscore the role of AR as a hormonal 
gatekeeper that helps fine-tune the onset of sexual mat-
uration in alignment with an organism’s energetic and 
developmental status, thereby contributing to variation 
in POL strategies.

Glucocorticoid receptor
Glucocorticoid receptor (GR) signaling is a key mediator 
of the physiological stress response and has broad impli-
cations for POL variation, particularly through its influ-
ence on energy allocation, immune function and early 
development [172–174]. Activated by glucocorticoids 
such as cortisol or corticosterone, GRs regulate the tran-
scription of a wide array of genes involved in metabolism, 

inflammation, and neuroendocrine regulation. In eco-
logical and evolutionary contexts, elevated or prolonged 
glucocorticoid exposure is often associated with slower 
POL strategies, reflecting a shift toward energy conser-
vation, delayed reproduction, and enhanced somatic 
maintenance under environmental stress [173, 175–179]. 
The GR signaling affects the HPG axis at multiple lev-
els, exerting inhibitory effects on reproductive develop-
ment when glucocorticoid levels are high [177, 179, 180]. 
Studies in rodents and primates have shown that stress-
induced glucocorticoids can suppress the GnRH pro-
duction and delaying sexual maturation [180–182]. This 
suppression is thought to be an adaptive response, delay-
ing reproductive investment until conditions are more 
favorable [182, 183]. Experimental models have also 
revealed that GRs are expressed in hypothalamic regions 
critical for reproductive control, further supporting their 
direct role in modulating pubertal timing [183–185]. 
Through this stress-responsive pathway, GR signaling 
enables organisms to fine-tune reproductive develop-
ment in relation to environmental unpredictability and 
internal energy status, aligning the timing of maturation 
with broader life-history priorities.

Thyroid hormone
Thyroid hormone (TH) signaling plays an essential role 
in regulating metabolic rate, growth, and developmen-
tal processes, positioning it as a key contributor to vari-
ation in POL strategies [186–188]. Thyroid hormones, 
primarily triiodothyronine (T3) and thyroxine (T4), exert 
their effects through nuclear thyroid hormone receptors 
(TRα and TRβ), which influence gene expression in a 
wide range of tissues, including the brain, liver, bone, and 
gonads [189]. Across vertebrates, TH levels have been 
shown to correlate with metabolic intensity and growth 
velocity; traits closely tied to POL variation [187, 190]. 
For instance, species or individuals with elevated thyroid 
activity often exhibit faster development, earlier matura-
tion, and shorter generation times, characteristic of a fast 
POL [187, 191–193]. In contrast, reduced TH signaling 
is associated with delayed growth and extended devel-
opmental periods [193]. TH is also critically involved in 
controlling the neuroendocrine control of reproduction. 
It influences hypothalamic function and contributes to 
the maturation of the GnRH neural network, which regu-
lates the HPG axis [194–198]. Experimental evidence in 
animal models indicates that thyroid dysfunction during 
critical developmental windows, such as hypothyroid-
ism, can delay the onset of puberty by impairing GnRH 
neuron activation [144, 195, 196]. Moreover, TH is 
required for proper structural and functional maturation 
of hypothalamic circuits involved in reproductive con-
trol [199]. These findings demonstrate TH signaling as a 
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key metabolic and developmental integrator, aligning the 
pace of growth and energy use with the appropriate tim-
ing of sexual maturation in accordance with the organ-
ism’s broader life-history strategy.

Senescence‑related mechanisms
Sirtuin 1
Sirtuin- 1 (SIRT1) is a NAD⁺-dependent deacetylase 
widely recognized for its role in cellular stress responses, 
metabolism, and aging, placing it at the intersection of 
longevity regulation and POL strategies [200, 201]. Func-
tionally, SIRT1 modulates gene expression by deacetylat-
ing histones and various transcription factors, thereby 
influencing pathways involved in DNA repair, mitochon-
drial function, oxidative stress resistance, and metabolic 
adaptation [201, 202]. Its activity is closely linked to cel-
lular energy status, increasing under caloric restriction 
or low-nutrient conditions; scenarios often associated 
with slower POL phenotypes characterized by extended 
lifespan and delayed reproduction [203–205]. In the con-
text of reproductive timing, SIRT1 has emerged as an 
important regulator of the (HPG axis, particularly under 
energy-deficient states [205]. Studies in mice have shown 
that elevated hypothalamic SIRT1 activity suppresses 
Kiss1 expression, thereby reducing kisspeptin signal-
ing and downstream GnRH activity, effectively delaying 
pubertal onset [206]. Conversely, reduced SIRT1 signal-
ing has been associated with earlier sexual maturation, 
suggesting it functions as a molecular brake that adjusts 
reproductive timing in response to metabolic and ener-
getic conditions [203, 205]. Through its integration of 
metabolic signals, epigenetic control, and reproductive 
axis regulation, SIRT1 serves as a key mediator aligning 
energy conservation and somatic maintenance with the 
timing of sexual maturation.

Telomere length dynamics
Telomere length (TL), a marker of cellular aging and rep-
licative history, has gained attention in the study of POL 
variation due to its role in balancing somatic mainte-
nance and life-history investment [207, 208]. Telomeres, 
which cap and protect chromosome ends, progressively 
shorten with cell division and oxidative stress, ultimately 
limiting cellular lifespan [207–210]. Species or individu-
als with a fast POL tend to exhibit more rapid telomere 
attrition, reflecting early growth, high metabolic activity, 
and shorter lifespans, while slow-POL strategies are often 
associated with longer telomeres and enhanced cellular 
maintenance [37, 211–217]. Studies in humans and nine-
spined sticklebacks (Pungitius pungitius) have reported 
associations between TL and the timing of sexual matu-
ration [37, 218–220]. However, the correlations between 
TL and various reproduction-related timings remain 

associative [215–217, 221–225], and there is currently 
no established mechanistic pathway directly linking TL 
dynamics to the HPG axis. Instead, one plausible expla-
nation lies in regulatory links between telomere short-
ening and adipogenesis/dietary changes; both processes 
tightly influencing each other [226–230]. Short telom-
eres are known to impair adipocyte differentiation and 
function, potentially affecting energy storage and meta-
bolic signaling. Since energy reserves are critical cues for 
pubertal onset, especially in vertebrates, it is possible that 
TL influences sexual maturation indirectly, by modulat-
ing the capacity for fat accumulation and the downstream 
metabolic signals that inform the brain about readiness 
for reproduction. Thus, while telomere dynamics may 
reflect POL trade-offs, their role in regulating maturation 
timing likely operates through indirect effects on energy 
availability rather than direct control of reproductive 
signaling pathways.

The Hippo pathway as a master regulator of POL 
related mechanisms
The Hippo signaling pathway can be considered a mas-
ter regulator of the abovementioned POL-related mecha-
nisms, given its ability to act upstream of all of them and 
regulate their activity. While it is also regulated by some 
of these pathways, its primary role as a central coordina-
tor places it at the heart of a broader regulatory network. 
Although the Hippo pathway’s involvement in specific 
POL traits—such as body size and sexual maturation tim-
ing—has gained increasing attention, its potential role in 
other life-history traits like aging, longevity, and lifespan 
remains largely unexplored. Nevertheless, since many 
Hippo-connected POL mechanisms are well-established 
regulators of cellular aging, it is reasonable to speculate 
that Hippo signaling may contribute more broadly to life-
history evolution. In the following sections, we provide 
examples of direct regulatory connections between the 
Hippo pathway and the activity of the POL-related mech-
anisms, divided into two main groups: those associated 
with accelerated aging, and those linked to aging delay 
and extended lifespan (summarized in Figure 3).

Hippo pathway interactions with POL mechanisms 
associated with accelerated aging
IGF‑ 1 signaling
While essential for growth and development, chronic 
elevation of IGF- 1 signaling has been associated with 
increased cancer risk, reduced stress resistance, and 
shorter lifespan in multiple species [231–233]. High 
IGF- 1 activity promotes anabolic growth and cell prolif-
eration, which may increase the burden of DNA damage 
and reduce investment in repair mechanisms over time. 
Animal studies consistently show that reduced IGF- 1 
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signaling extends lifespan, supporting its role in acceler-
ated aging when overly active [234, 235]. In recent years, 
studies in mammalian cells have revealed a direct regu-
latory connection between YAP and the IGF- 1 recep-
tor at the transcriptional level, with evidence suggesting 
that this interaction is reciprocal and stimulatory in both 
directions [236–239]. However, most of these stud-
ies have been conducted under pathological conditions 
(excessive cell proliferation), and such regulatory connec-
tions need to be further investigated during normal tis-
sue growth and at the organismal level.

mTOR signaling
mTOR integrates nutrient, energy, and growth signals to 
drive protein synthesis and cell growth, but its persistent 
activation has been closely tied to cellular aging, meta-
bolic dysfunction, and reduced longevity [236]. Overac-
tive mTOR signaling suppresses autophagy, contributing 
to the accumulation of damaged proteins and organelles, 

a hallmark of aging cells [237]. Pharmacological inhibi-
tion of mTOR has been shown to extend lifespan in vari-
ous model organisms [238–240]. During lipogenesis and 
tissue growth, the Hippo-YAP/TAZ pathway can directly 
regulate the mTOR pathway by transcriptionally upregu-
lating mTORC1 through an SGK1-dependent mecha-
nism [241]. Moreover, activation of mTOR signaling can 
enhance YAP/TAZ function by promoting their nuclear 
localization and stabilization, indicating a direct and 
reciprocal regulatory connection between the two path-
ways in metabolic processes [242]. Given the importance 
of the mTOR pathway in various POL-related traits, this 
positions the Hippo pathway as a potentially pivotal 
player in mTOR-related life-history studies.

AR signaling
AR signaling supports growth and reproductive function, 
but excessive or prolonged AR activity has been linked 
to pro-aging effects, particularly through increased 

Figure 3. Direct regulatory connections between the Hippo pathway and POL-related mechanisms influencing organismal lifespan. To avoid 
complexity, the regulatory crosstalk between mechanisms/signals is not shown; only their connections to the Hippo pathway are depicted. The 
green and red arrows indicate regulatory induction and inhibition, respectively
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oxidative stress, inflammation, and cancer risk, especially 
in androgen-sensitive tissues [243–246]. Elevated andro-
gen signaling is also associated with reduced lifespan in 
male mammals, potentially due to its growth-promoting 
and mitogenic effects [245–247]. The Hippo–YAP/TAZ 
pathway can regulate androgen receptor (AR) signal-
ing in multiple ways: at the transcriptional level, it can 
enhance AR expression, while at the protein level, it can 
directly inhibit AR through physical interaction [248]. 
Conversely, AR signaling can promote the dephosphoryl-
ation of YAP/TAZ, thereby enhancing their activity [248]. 
These findings indicate a direct but complex and multi-
layered regulatory relationship between the two path-
ways. However, it should be noted that these interactions 
have been studied primarily in pathological contexts 
involving excessive cell proliferation, and future studies 
are essential to validate these mechanisms at the organis-
mal level and in normal life-history contexts.

GR signaling
Chronic activation GR signaling, often due to prolonged 
stress, can lead to immunosuppression, metabolic imbal-
ance, and accelerated aging [249, 250]. High gluco-
corticoid levels contribute to muscle wasting, insulin 
resistance, and cognitive decline; features commonly 
observed in aging organisms [251, 252]. Although GR 
plays a vital role in acute stress response, its sustained 
activation undermines longevity-promoting processes. 
Numerous experimental studies indicate that YAP/TAZ 
can directly interact with GR signaling pathways in vari-
ous tissues under both normal and pathological condi-
tions [253–256]. For instance, YAP/TAZ can physically 
interact with GR at the protein level, inhibiting its activ-
ity and modulating GR-responsive gene expression dur-
ing metabolic processes and under normal physiological 
conditions [253, 254]. In contrast, GR signaling has also 
been shown to act as an upstream inducer of YAP/TAZ 
activity by promoting YAP nuclear localization in both 
normal and pathological states [255, 256]. These find-
ings highlight a significant point of integration between 
Hippo signaling and glucocorticoid-mediated effects.

TL shortening
Progressive telomere shortening during cell division con-
tributes to cellular senescence and tissue aging, as criti-
cally short telomeres trigger DNA damage responses 
that halt proliferation [214]. This mechanism acts as a 
molecular clock that limits cellular lifespan and is impli-
cated in age-related degenerative diseases. A key finding 
in human-derived cells showed that the Hippo co-factor 
YAP directly regulates TERT transcription by binding its 
promoter, promoting telomerase activity and TL main-
tenance [257]. Similar YAP-mediated TERT regulation 

has been observed in mice [258], and YAP has also been 
implicated in TERC transcription in cancer studies [259]. 
In Drosophila, TEAD directly binds telomeric repeats 
to regulate telomere-specific retrotransposons, affect-
ing TL dynamics [260]. In addition, TAZ, YAP’s main 
partner, modulates TL via two mechanisms: a telomer-
ase-dependent pathway through POT1, and a telomerase-
independent one via RAD51 C; depletion of TAZ reduces 
expression of both genes, leading to TL shortening [261]. 
Conversely, TL shortening can enhance YAP activation, 
while telomerase reactivation suppresses YAP transcrip-
tional activity, as shown in a mouse model [262]. A recent 
study also suggests reciprocal interactions between YAP/
Hippo signaling and telomere regulation in vertebrate 
gut microbiota–host dynamics [263]. Together, these 
findings highlight bidirectional links between the Hippo 
pathway and telomere dynamics, raising the possibility 
that Hippo’s roles in sexual maturation and responses to 
dietary or thermal changes may be mediated via TL regu-
lation in ecological contexts

Hippo pathway interactions with POL mechanisms 
associated with delayed aging and longevity
AMPK signaling
AMPK functions as a cellular energy sensor that becomes 
activated under low-energy conditions, such as fasting or 
exercise, promoting metabolic adaptations that enhance 
cellular resilience and survival [128, 264]. By suppressing 
anabolic processes and stimulating catabolic pathways 
like autophagy and mitochondrial biogenesis, AMPK 
helps reduce oxidative damage and improve metabolic 
efficiency, which are key features of extended lifespan 
in various model organisms [264, 265]. Unlike the other 
signals discussed here, the direct regulation of AMPK 
signaling by components of the Hippo pathway remains 
to be clarified. However, AMPK’s regulation of the Hippo 
pathway, such as the inhibition of YAP/TAZ through 
AMPK-mediated phosphorylation [266], is one of the 
well-characterized regulatory connections between the 
Hippo pathway and other signaling mechanisms [266–
268]. Given the central role of AMPK in metabolism, this 
connection may also serve as a key gateway for integrat-
ing the Hippo pathway into various metabolic and energy 
homeostasis processes [269].

SIRT1 signaling
SIRT1 plays an important role in promoting longevity by 
enhancing DNA repair, mitochondrial function, and anti-
oxidant defenses [23, 270]. It exerts its anti-aging effects 
partly through deacetylating key regulators like FOXO 
and p53, thereby maintaining genomic stability and stress 
resistance [271]. SIRT1 also represses inflammation and 
supports circadian rhythm regulation, both of which 
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deteriorate with age [272, 273]. The Hippo pathway has 
been shown to directly influence SIRT1 activity through 
YAP/TAZ, which can enhance SIRT1 transcription [274, 
275], and YAP itself is a target of SIRT1-mediated dea-
cetylation [276, 277], establishing a reciprocal regulatory 
connection between the two pathways. By positioning 
Hippo–YAP/TAZ among the regulators of SIRT1 sign-
aling, it is not surprising that a range of potential YAP-
mediated, SIRT1-dependent mechanisms influencing 
aging can be envisioned, calling for further investigation.

ER signaling
ER signaling has been implicated in lifespan extension, 
especially in females, through its regulation of metabolic 
homeostasis, oxidative stress response, and vascular 
health [243, 278]. ERα, in particular, promotes protec-
tive gene expression profiles that enhance mitochondrial 
function and reduce systemic inflammation [278, 279]. 
Aging-related decline in estrogen levels is associated 
with increased disease risk and functional decline [279]. 
Recent studies in mammalian cells have found that YAP 
can directly inhibit ERα transcription by binding to an 
enhancer located upstream of the ERα gene [280, 281]. 
Interestingly, this inhibitory regulatory connection may 
be reciprocal, as ER signaling can suppress YAP activity 
by promoting its phosphorylation [282, 283]. Although 
these regulatory links appear to be direct, it remains 
unclear whether their reciprocal inhibition operates 
under normal physiological conditions, as these findings 
were all obtained under pathological contexts.

TH signaling
Thyroid hormones are essential for maintaining meta-
bolic rate, thermogenesis, and tissue homeostasis, but 
tightly regulated TH signaling is also associated with 
extended lifespan in multiple animal models [284, 285]. 
Mild reductions in TH levels have been linked to lower 
oxidative stress and improved cellular efficiency, which 
contribute to delayed aging [284, 286]. TH also plays 
roles in brain aging and neuroprotection [287]. Experi-
mental evidence demonstrates that Hippo pathway 
activity, through TAZ and its downstream target PAX8, 
is essential not only for the development of the thyroid 
gland but also for thyroid hormone biosynthesis [288, 
289]. Although these recent findings indicate an exten-
sive and direct regulatory role of the Hippo pathway 
upstream of TH signaling, further investigations are 
required to understand the function of these regulatory 
connections in ecological and life-history contexts.

Leptin signaling
Leptin signaling helps maintain glucose homeostasis, 
reduces lipid accumulation, and prevents the metabolic 

decline often seen in age-related disorders [133, 290]. 
Leptin resistance is commonly associated with obesity 
and accelerated aging, while leptin sensitivity is linked 
to metabolic health and longevity [290, 291]. A recent 
research has shown that Hippo–YAP/TAZ can act as an 
upstream regulator of leptin signaling by directly bind-
ing to an upstream enhancer site of the leptin gene and 
upregulating its expression in adipocytes [292]. This 
important finding places Hippo–YAP/TAZ at a key posi-
tion in leptin-dependent metabolic processes; however, 
the universality of this regulatory link remains to be 
explored across taxa and in relation to environmental 
changes.

DLK1‑Notch signaling
DLK1-Notch signaling is involved in stem cell quies-
cence and regenerative capacity, both of which are vital 
for slowing age-related decline [145, 293]. Proper regula-
tion of this pathway helps maintain the balance between 
self-renewal and differentiation, preventing premature 
stem cell exhaustion and tissue degeneration [293]. Dur-
ing adipocyte proliferation, the Hippo pathway directly 
intersects with the Notch signaling cascade via YAP/
TAZ-mediated transcriptional regulation of DLK1, indi-
cating a clear upstream influence of Hippo components 
on DLK1–Notch signaling activity [294]. Inhibition of 
YAP/TAZ function by LATS2 leads to reduced DLK1 
transcription, subsequently blocking the inhibitory 
effects of DLK1 on adipogenesis [294]. This further sug-
gests that the Hippo–YAP/TAZ regulatory axis may play 
an essential role in DLK1–Notch-dependent regulation 
of energy balance and metabolism; an area that requires 
further investigation in ecological contexts.

Examples of Hippo pathway interactions with other 
mechanisms influencing aging
DNA methylation
DNA methylation is a key epigenetic mechanism that 
regulates gene expression and genome stability, and its 
role in aging is highly context-dependent, even though 
aging is characterized by a global decrease in methylation 
alongside site-specific increases at particular genomic 
loci [295, 296]. Age-related changes in DNA methyla-
tion can reflect both protective adaptations and harm-
ful deregulation [297, 298]. While hypermethylation of 
tumor suppressor genes or hypomethylation of repetitive 
elements can accelerate genomic instability and aging, 
targeted methylation changes are also involved in lon-
gevity-associated gene regulation [297]. DNA methyla-
tion patterns form the basis of epigenetic clocks, which 
closely track biological aging [299]. Components of the 
Hippo pathway, particularly YAP/TAZ, are known to 
influence DNA methyltransferase activity and chromatin 
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accessibility, thereby shaping the epigenetic landscape in 
a way that can impact both development and aging trajec-
tories. For instance, some key players in the DNA meth-
ylation process, namely DNMT1, TET1, and EZH2, are 
known to be direct targets or interacting partners of the 
Hippo–YAP/TAZ pathway [300–302], while DNMT1 and 
EZH2 can also act directly upstream of YAP/TAZ signal-
ing [303–305]. Interestingly, these same DNA methyla-
tion factors have also been implicated in regulating the 
onset of sexual maturation [306, 307] and longevity [308]. 
These complex, reciprocal regulatory connections offer a 
myriad of possibilities across biological processes involv-
ing both DNA methylation and the Hippo pathway.

RNA methylation
RNA methylation, particularly N6-methyladenosine (m6 
A) modification, is a rapidly emerging regulator of gene 
expression, RNA stability, and translation efficiency, 
all of which have context-dependent impacts on aging 
[309, 310]. Depending on the cellular environment and 
which m6 A writers (e.g., METTL3), erasers (e.g., FTO), 
or readers (e.g., YTHDF proteins) are active, m6 A can 
either promote longevity by enhancing stress responses 
and repair mechanisms or accelerate aging through 
increased inflammation and impaired differentiation 
[309, 310]. Importantly, recent evidence suggests that m6 
A methylation is responsive to numerous environmental 
cues, including nutrient levels, oxidative stress, and tem-
perature fluctuations, positioning it as a molecular sen-
sor linking environmental conditions to gene regulation 
[311]. The Hippo pathway intersects with this process, 
as YAP/TAZ activity can be directly influenced by m6 A 
methylation process (e.g. via FTO and METTL3) [312, 
313], establishing important connections that can inte-
grate the Hippo pathway to environmental sensing and 
aging through epitranscriptomic.

MicroRNAs
MicroRNAs (miRNAs) fine-tune gene expression post-
transcriptionally and play complex roles in aging, act-
ing as either accelerators or suppressors, depending on 
the specific miRNA, tissue context, and target pathways 
[314, 315]. For instance, some miRNAs promote senes-
cence, inflammation, or DNA damage, while others 
support stem cell maintenance, stress resistance, and 
metabolic balance, contributing to extended healthspan 
[314, 315]. The Hippo pathway is both a target and reg-
ulator of miRNAs: YAP/TAZ are directly repressed by 
several aging-associated miRNAs [316–318], while YAP 
itself can regulate miRNA processing enzymes like Dicer 
and Drosha [85, 316], establishing a feedback loop that 
links Hippo signaling to the miRNA network in aging. 
Moreover, it is interesting to note that the Hippo pathway 

can also act directly as an upstream regulator of specific 
microRNAs, such as miR- 29 and let- 7 [85, 319], which 
are well known for their roles in aging processes and the 
modulation of longevity [320, 321] as well as pubertal 
timing [86, 322].

Unanswered questions and future directions
We have examined how a diverse set of molecular mech-
anisms, including hormonal signaling, metabolic sensing, 
and epigenetic regulation, contribute to the regulation 
of POL traits, with reproductive timing serving as a key 
example. Emerging evidence places the Hippo pathway 
at the center of these regulatory networks, acting both 
upstream and downstream of many of these signals. 
Rather than operating in isolation, these mechanisms 
interact dynamically, often responding to environmental 
cues such as energy availability, temperature, and stress 
exposure. The Hippo pathway, with its capacity to inte-
grate and coordinate these inputs, presents a compelling 
candidate for understanding how organisms modulate 
POL strategies across ecological contexts. Yet, many 
questions remain about how these interactions function 
at the organismal level and vary across taxa—offering fer-
tile ground for future research.

From pathological models to organismal and ecological 
relevance
A recurring theme across the studies discussed in this 
review is that many of the direct regulatory connections 
between the Hippo pathway and POL-related mecha-
nisms have been identified primarily in mammalian cell 
lines or under pathological conditions, such as cancer 
or tissue overgrowth. These models, while informative 
for uncovering the basic molecular interactions, do not 
always reflect the normal physiological states in which 
POL traits evolve and operate. This context presents an 
important limitation. The relevance of Hippo–POL inter-
actions under normal biological conditions, particularly 
those involving growth, metabolism, and reproductive 
timing, remains largely untested. Understanding whether 
these regulatory links function similarly in non-patho-
logical settings is essential for assessing their significance 
in life-history evolution. Furthermore, most current data 
come from a narrow range of model organisms, particu-
larly mammals, limiting the ability to generalize findings 
across taxa with diverse POL strategies. To address these 
gaps, future experimental studies should prioritize:

1. Validating known Hippo–POL interactions under 
normal physiological conditions, including during 
development, growth, and reproductive transitions.
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2. Shifting the focus from cell-based models to whole-
organism studies, where POL traits manifest in inte-
grated, multi-systemic ways.

3. Expanding research beyond mammals to include 
species with contrasting ecological life-history strate-
gies, which may reveal conserved or divergent roles 
of the Hippo pathway.

4. Investigating how environmental variables, such as 
food availability, temperature, and stress, modulate 
Hippo signaling and its downstream targets in eco-
logically realistic contexts.

Bridging the current gap between molecular findings 
and ecological function will be key to understanding the 
true scope of the Hippo pathway’s role in shaping POL 
traits. Such research could uncover how this evolutionar-
ily conserved signaling network contributes to the adap-
tive tuning of life-history strategies across species and 
environments.

The Hippo pathway as a regulator of aging and longevity: 
Moving beyond growth and maturation
Research on the Hippo signaling pathway has primarily 
focused on its central roles in regulating body growth 
and the timing of reproductive maturation. These devel-
opmental endpoints have offered important insights 
into how Hippo signaling integrates environmental and 
physiological signals to shape life-history trajectories. 
However, this narrow focus has left a substantial gap in 
our understanding of the Hippo pathway’s broader role 
in other POL-related traits, particularly those associ-
ated with aging and longevity. The Hippo pathway inter-
acts with a wide range of molecular mechanisms that are 
known to influence lifespan and the rate of aging. Com-
ponents such as YAP and TAZ are tightly connected to 
longevity-regulating signals, including AMPK, mTOR, 
SIRT1, GR, and key epigenetic modifiers. These interac-
tions position the Hippo pathway as a potential integra-
tor of metabolic regulation, stress responses, DNA repair, 
and somatic maintenance, processes that are fundamen-
tal to aging biology. Despite these strong mechanistic 
links, the involvement of the Hippo pathway in aging and 
lifespan regulation remains largely unexamined in both 
experimental and eco-evolutionary research. Incorpo-
rating aging-related traits into Hippo pathway research 
would significantly broaden our understanding of how 
organisms manage life-history trade-offs over time. 
Investigating how Hippo signaling influences the alloca-
tion of energy toward repair and maintenance in later life 
could help explain variation in aging rates across species 
with different POL strategies. Furthermore, examining its 
role in late-life decline, regeneration, and longevity under 
natural conditions may uncover species-specific patterns 

of Hippo activity that are currently hidden by the reliance 
on early-life developmental models. Bringing POL traits 
such as aging and longevity into the scope of Hippo-
related research would also help bridge biomedical find-
ings with ecological and evolutionary perspectives. Much 
of what we know about the Hippo pathway comes from 
studies on disease and tissue overgrowth, yet its evolu-
tionary functions likely extend to maintaining organis-
mal integrity over the lifespan. Shifting the research lens 
beyond growth and reproduction would allow for a more 
comprehensive understanding of the Hippo pathway’s 
role in coordinating life-history strategies in response to 
environmental pressures.

Investigating the role of the Hippo pathway in TL changes
While pathways such as mTOR, IGF, and GR signaling 
have been extensively studied in relation to the Hippo 
pathway, its role in the regulation of telomere dynam-
ics remains comparatively underexplored compared to 
many of the mechanisms discussed in this review. Given 
its established roles in cell proliferation, growth regula-
tion, and emerging evidence of involvement in telomere 
maintenance, Hippo signaling is a promising candidate 
for future investigations into TL dynamics in eco-evolu-
tionary contexts. Its influence on stress responses, energy 
homeostasis, and developmental transitions suggests 
it may mediate TL-associated trade-offs in life-history 
evolution. Direct links between Hippo components and 
telomere machinery support its potential as a molecular 
bridge connecting environmental variation, TL regula-
tion, and reproductive timing. Species-specific variation 
in these interactions may further clarify Hippo’s evolu-
tionary significance. Moreover, while many TL-associ-
ated genetic loci have been identified, their functional 
regulation remains poorly understood [208]. One nota-
ble example is E2 F1, a conserved transcription factor 
involved in organ size [323], testicular maturation [324], 
and telomerase expression [325], which also inhibits YAP 
activity [323], highlighting a potential integrative link 
between Hippo signaling, TL regulation, and pubertal 
timing (Table 1).

Need for balanced research expansion
Although increasing evidence points to the Hippo 
pathway as a key integrator of molecular mechanisms 
underlying POL traits, many of its proposed con-
nections, such as those with metabolic regulators, 
hormonal signals, epigenetic modifiers, and telomere-
associated processes, remain unevenly studied. A nota-
ble limitation in the current literature is the lack of 
systematic validation across diverse biological models, 
life stages, and environmental contexts. While some 
links have been supported in mammalian systems, 
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their generality and ecological relevance are still uncer-
tain. To address this gap, future studies should move 
beyond correlative findings and adopt experimental 
designs that can establish causality. This includes the 
use of loss-of-function and gain-of-function models for 
Hippo components in relation to various POL-associ-
ated pathways. Incorporating non-mammalian species 
and ecologically relevant conditions will be essential 
to determine whether observed regulatory interactions 
are conserved or context dependent. Another impor-
tant step is ensuring methodological and taxonomic 
diversity, as well as the inclusion of negative findings. 
The lack of published null results may contribute to 
an inflated sense of functional connectivity, hinder-
ing the refinement of mechanistic models. Encourag-
ing the dissemination of such results will help reduce 
publication bias and support a more balanced perspec-
tive. By expanding the scope of research and applying 

rigorous, context-aware approaches, we can build a 
more accurate understanding of how the Hippo path-
way interfaces with the molecular systems that govern 
POL traits. This will ultimately strengthen its integra-
tion into eco-evolutionary frameworks and help clarify 
its role across species and environments.
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Table 1 Examples of Hippo pathway or telomere length links to thermal and dietary changes at organismal level

Pathway
/Mechanism

Link to environmental factor Species References

Hippo pathway
(via Lin28)

Diet-induced precocious puberty Mice
(Mus musculus)

[80, 81]

Hippo pathway
(via Yap)

Diet-induced obesity Mice
(Mus musculus)
Human
(Homo sapiens)

[68] [69]

Hippo pathway Adaption to low temperature Honey bees
(Apis mellifera)

[104]

Hippo pathway Adaption to different temperature gradients Hive beetles
(Aethina tumidahas)

[102]

Hippo pathway Adaption to thermal stress Oysters
(Crassostrea spp.)

[106]

Hippo pathway Adaption to high temperature Indigenous chickens
(Gallus gallus spadiceus)

[107]

Hippo pathway Adaption to low temperature Giant pandas
(Ailuropoda melanoleuca)
Pig
(Sus scrofa)

[109] [108]

Telomere length Warmer temperature American alligators
(Alligator mississippiensis)
Desert lizard (Phrynocephalus przewalskii)

[326]

Telomere length Environmental temperature in association with age at maturity Nine-spined sticklebacks
(Pungitius pungitius)

[220]

Telomere length Environmental temperature depending on life stage Zebra finch
(Taeniopygia castanotis)

[327]

Telomere length Environmental temperature depending on the tissues Human
(Humo sapien)

[328] [329]

Telomere length Dietary fat composition Mice
(Mus musculus)

[226] [330]

Telomere length Food availability Atlantic salmon
(Salmo salar)

[229]

Telomere length Dietary fat composition Great tit
(Parus major)

[230]

Telomere length Food availability Western spadefoot toad (Pelobates cultripes) [331]
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