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Abstract 

The study of phenotypic evolution has been transformed in recent decades by methods allowing precise quantifica-
tion of anatomical shape, in particular 3D geometric morphometrics. While this effectiveness of geometric morpho-
metrics has been demonstrated by thousands of studies, it generally requires manual or semi-automated landmark-
ing, which is time-consuming, susceptible to operator bias, and limits comparisons across morphologically disparate 
taxa. Emerging automated methods, particularly landmark-free techniques, offer potential solutions, but these 
approaches have thus far been primarily applied to closely related forms. In this study, we explore the utility of auto-
mated, landmark-free approaches for macroevolutionary analyses. We compare an application of Large Deformation 
Diffeomorphic Metric Mapping (LDDMM) known as Deterministic Atlas Analysis (DAA) with a high-density geometric 
morphometric approach, using a dataset of 322 mammals spanning 180 families. Initially, challenges arose from using 
mixed modalities (computed tomography (CT) and surface scans), which we addressed by standardising the data 
by using Poisson surface reconstruction that creates watertight, closed surfaces for all specimens. After standardisa-
tion, we observed a significant improvement in the correspondence between patterns of shape variation measured 
using manual landmarking and DAA, although differences emerged, especially for Primates and Cetacea. We further 
evaluated the downstream effects of these differences on macroevolutionary analyses, finding that both methods 
produced comparable but varying estimates of phylogenetic signal, morphological disparity and evolutionary rates. 
Our findings highlight the potential of landmark-free approaches like DAA for large scale studies across disparate 
taxa, owing to their enhanced efficiency. However, they also reveal several challenges that should be addressed 
before these methods can be widely adopted. In this context, we outline these issues, propose solutions based 
on existing literature, and identify potential avenues for further research. We argue that by incorporating these 
improvements, the application of landmark-free analyses could be expanded, thereby enhancing the scope of mor-
phometric studies and enabling the analysis of larger and more diverse datasets.

Keywords Morphometrics, Geometric morphometrics, Landmark-free morphometrics, Shape, Mammalia, 
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Background
Morphometrics, the quantitative analysis of shape, is a 
well-established family of methods in the field of biol-
ogy [1]. In recent decades, geometric morphometrics has 
emerged as the gold standard for addressing evolution-
ary questions of shape in diverse datasets [2]. Typically, 
this approach relies on the manual placement of land-
marks to produce two  (2D) or three-dimensional  (3D) 
coordinates by labelling homologous anatomical loci 
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[3]. Raw coordinates are then transformed using meth-
ods such as Procrustes superimposition [4] to register 
objects to a common frame and isolate biological varia-
tion by minimising non-biological factors such as posi-
tion, orientation, and size. Linear displacement across all 
the coordinates can then be measured and scaled by the 
number of landmarks to isolate the biological variation 
and estimate shape co(variation) [5].

Despite advancements in high-density morphomet-
ric techniques [6], including semi-automated placement 
of sliding semilandmarks [7], geometric morphometric 
methods remain largely manual. This makes them time-
consuming and prone to observer bias which can lead to 
a lack of repeatability [8]. Moreover, with the increasing 
accessibility and affordability of high-resolution imaging 
[9, 10], alongside the development of tools for automated 
image segmentation [11, 12], databases of 3D images are 
expanding, providing vast amounts of data for morpho-
metric analysis [13–15]. Thus, there is now a pressing 
need to improve the efficiency and resolution at which 
we capture shape variation to maximise the potential of 
this 3D data [16].

In addition to speed and repeatability, the requirement 
of homology for landmark placement, while important 
for biologically meaningful comparability across speci-
mens, limits not only processing time but their appli-
cability when comparing disparate taxa, as identifiable 
homologous points become more obscure and fewer in 
number, even within homologous structures [17]. Con-
sequently, the reduction in the number of discernible 
landmarks when analysing phylogenetically distinct taxa 
results in the capture and comparison of only a minimal 
amount of variation, potentially leading to weaker biolog-
ical inferences [18].

Emerging automated approaches in geometric mor-
phometrics offer potential solutions to these challenges. 
Recent methods, including automated landmarking using 
atlas templates [19–21] or point clouds [22, 23] have 
allowed for improvements in efficiency. However, these 
techniques are still heavily tied to homology and may 
thus be less effective when attempting to overcome the 
current issues related to broad phylogenetic datasets. 
“Landmark or homology-free” approaches, which aim to 
capture shape data without relying solely on homologous 
landmarks, offer an alternative. These methods include 
psuedolandmarks [13, 24], iterative closest point (ICP) 
[25, 26], dense correspondence analysis [27–29], surface 
descriptors [30, 31] and large deformation diffeomorphic 
metric mapping (LDDMM) [32–34]. While some studies 
have demonstrated the promise of these methods at the 
interspecific level [35], most of these methods have pri-
marily been tested on intraspecific datasets, leaving their 
utility at higher taxonomic levels undetermined.

Here, we focus on a LDDMM based method called 
Deterministic Atlas Analysis (DAA), implemented in 
the software Deformetrica [33, 34]. The DAA frame-
work enables the comparison of shapes from images and 
meshes by using diffeomorphic transformations in 2D or 
3D ambient space [32]. This comparison is achieved by 
quantifying the deformation required for a dynamically 
computed geodesic mean shape, known as an atlas [33], 
to fit each specimen in the dataset. Unlike some other 
diffeomorphic methods, DAA does not rely on a fixed 
template; instead, it iteratively estimates the optimal 
atlas shape by minimising the total deformation energy 
needed to map it onto all specimens [36, 37], meaning 
that results are sample dependent.

The DAA begins with the atlas generation process 
through selecting an initial template mesh, which under-
goes geodesic registration [37] to represent the dataset 
under study. Following this, 2D or 3D deformations are 
computed to map the atlas onto each specimen in the 
dataset. The spatial extent of these deformations rela-
tive to the atlas is controlled by a kernel width parameter, 
with smaller values yielding finer-scale deformations. 
Based on this kernel width, a series of reference points, 
called control points, are generated. These points are 
initially evenly distributed within the ambient space sur-
rounding the atlas, but as they increase, they are adjusted 
to fit areas with greater variability in the atlas. These 
act as the guides for shape comparison, eliminating the 
need for standard landmarks [33]. For each control 
point, a momentum vector (“momenta”) is calculated for 
each specimen in the dataset, representing the optimal 
deformation trajectory for aligning the atlas with each 
specimen. These momenta work within a Hamiltonian 
framework, derived from the velocity field of ambient 
space [34], and provide the basis for directly compar-
ing shape variation. Techniques such as kernel principal 
component analysis (kPCA) [38] then facilitate the visu-
alisation and exploration of covariation in the momenta-
based shape data [39] (see Materials and Methods for 
further details).

In this study, we compare estimates of shape variation 
produced by DAA, following an adaption of the pipeline 
developed by Toussaint et al. [39], with those generated 
using manual landmarking and semi-landmarking tech-
niques (hereafter referred to as manual landmarking for 
brevity). We compare the ability of each method to cap-
ture cranial shape across a broad and extensive dataset 
consisting of 322 crown and stem placental mammals 
[40], examining the influence of mesh modalities, atlas 
selection and the kernel width parameter on the results 
and the correlation between the two methods. Our com-
parison employs, Euclidean distances [41], the Mantel 
test [42, 43], and the PROcrustean randomisation TEST 



Page 3 of 20Mulqueeney et al. BMC Ecology and Evolution           (2025) 25:38  

(PROTEST) [44, 45] to quantify the overall correlation 
between shape matrices. Heatmaps based on thin-plate 
spline deformations and Euclidean distance measures 
[46] are then used to identify how shape is captured dif-
ferently using each method. Additionally, we investigate 
how the selection of method and kernel width influence 
downstream macroevolutionary analyses, including the 
estimation of phylogenetic signal, morphological dispar-
ity and evolutionary rates [47]. Together these metrics 
provide a comprehensive evaluation of how landmark-
free approaches like DAA compare with traditional man-
ual landmarking methods.

Furthermore, as mesh topology has been suggested to 
influence the performance of landmark-free analyses [48, 
49], we assess the impact of using both open and closed 
meshes (mixed modalities) generated from computed 
tomography (CT) and surface scanning, respectively 
in the same DAA (referred to as “Aligned-only”). Upon 
detecting an effect, we introduce the use of the “Pois-
son” mesh (Fig. 1) generated using Poisson surface recon-
struction [50], which creates watertight, closed meshes 
as a solution to overcome the issues of mixed modality 
datasets. Our comparative analyses capture the effects of 
all these aspects to provide a clear understanding of the 
considerations and potential utility of this approach for 
diverse applications.

Results
Comparison of initial template selection on atlas 
generation
Before extensively performing DAA, an initial template 
for the atlas generation process must be selected. As 
this choice could influence the results [51–53], we tested 

multiple initial templates based on the results of the 
manual landmarking analysis (see Materials and Meth-
ods). Our analysis indicated that initial template selec-
tion had a minimal overall impact on shape predictions 
(Additional File, Figures A1 and A2, Data A1-3). Using a 
fixed kernel width of 20.0 mm, we found that the results 
obtained from different templates were highly correlated, 
with the Arctictis binturong template showing a strong 
and significant correlation with both the Cacajao calvus 
(R2 = 0.957, p < 0.05) and Schizodelphis morckhoviensis 
(R2 = 0.801, p < 0.05) atlases (Figure A2).

Any differences were primarily attributed to the vary-
ing number of control points generated by each tem-
plate: A. binturong yielded 270 control points, C. calvus 
420 control points, and S. morckhoviensis only 32 con-
trol points. However, we observed a systematic bias for 
C. calvus and S. morckhoviensis, where the template 
specimen, which would typically cluster with those at the 
morphological extremes, was instead drawn toward the 
centre of the kernel principal component analysis (kPCA) 
plots. This artefact reduced morphological differentiation 
by shifting the template specimen away from its morpho-
logically similar counterparts. Based on these observa-
tions, A. binturong was chosen as the initial template for 
all subsequent analyses.

Comparison of aligned‑only and Poisson meshes
Adjusting the kernel width parameter in the DAA alters 
the spatial extent of the neighbouring points based on a 
Gaussian kernel that corresponds to the selected initial 
template (see Materials and Methods). When using A. 
binturong as the initial template, the kernel widths of 40.0 

Fig. 1 The process of transforming the (a) original mesh used in the “Aligned-only” analysis generated from computed tomography (CT) data 
into (b) a Poisson mesh requires the filling of holes using voxelisation and the use of a Poisson surface reconstruction algorithm [50] to generate 
watertight surfaces from orientated point sets. This allows to fill in the holes and evenly redistribute the faces and the vertices of the mesh prior 
to decimation. The effect here is demonstrated for the example of Acinonyx jubatus 
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mm, 20.0 mm, and 10.0 mm produced 45, 270 and 1,782 
control points, respectively (Fig.  2, Additional File, Fig-
ure A3). For each of these control points, a momentum 
vector (“momenta”) which describe the optimal defor-
mation trajectory of each specimen to fit the atlas were 
calculated for all 322 specimens and used to compare the 
overall shape variation with those obtained using manual 
landmarking.

Initial comparisons showed discrepancies when com-
paring the Aligned-only dataset (comprising open and 
closed surfaces) and the Poisson mesh dataset (all water-
tight closed surfaces) in the DAA. For the Aligned-only 
dataset, results across all three kernel widths showed an 
artificial distinction between specimens with open sur-
faces (from CT scans) and those with closed surfaces 
(from surface scans) across each of the evaluated princi-
pal component (PC) axes (Additional File, Figure A4 and 
A5 and Data A4-6). This is exemplified in PC1, where 
specimens with open surfaces clustered towards the 

positive end, while those with closed surfaces grouped at 
the negative end.

Standardising the data using the Poisson mesh redis-
tribution [50] to generate watertight closed meshes for 
all specimens helped to mitigate the impact of mixed 
modalities on the shape estimates. With the Poisson 
meshes, the artificial separation along PC1 was elimi-
nated, and specimens clustered more closely with oth-
ers of the same taxonomic order, rather than the mesh 
type (Fig. 3, Additional File, Figure A6 and Data A7 - 9). 
The removal of the impact of mixed modalities also led 
to a decrease in the percentage of variation explained 
by the first PC axis.

The changes in PC1 when removing the impact of mesh 
modality were also clear when comparing the correla-
tion of Euclidean distances [41] for each DAA with the 
manual landmarking results (Fig.  4). Although all six 
DAA analyses (three Aligned-only, three Poisson meshes) 
showed a significant correlation with the manual land-
marking result (p < 0.05, Fig. 4, Additional File, Table A1), 

Fig. 2 Comparative assessment of morphometric methods applied to the 3D mesh of the atlas specimen Arctictis binturong (MNHN 1936-1529). 
The figure contrasts (a) a manual landmarking approach using 754 landmarks and sliding semilandmarks with mapped control points 
through Deterministic Atlas Analysis (DAA) under different kernel widths: b 40.0 mm, generating 45 control points; c 20.0 mm, producing 270 
control points; and (d) 10.0 mm, resulting in 1,782 control points
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there was marked improvement in the correlation from 
the Aligned-only dataset (M = 0.148, SD = 0.023) to the 
Poisson mesh dataset (M = 0.460, SD = 0.059; t(2.02) = 
8.305, p < 0.05). In the Aligned-only dataset, specimens 
with open surfaces were separated from those with 
closed surfaces, unlike in the Poisson mesh analysis. This 
realignment of specimens when using Poisson meshes 
contributed to the improved correlation between manual 
landmarking and DAA (Fig. 4).

When comparing the correlation between Euclidean 
distances measured for each specimen from A. binturong 
in the Aligned-only and Poisson mesh analyses across 

major orders (> 10 specimens in analysis; Additional 
Material, Data A10), we observed significant improve-
ments for all orders except Perissodactyla, Pilosa, and 
Primates, where no statistically significant decrease was 
found (p > 0.05). The effect of Poisson redistribution was 
particularly pronounced in groups with a higher pro-
portion of CT scans, notably Chiroptera, Rodentia, and 
Carnivora. In these groups, the mean  R2 (averaged across 
kernel widths) increased significantly (p < 0.05) by 0.60, 
0.50, and 0.38, respectively.

Further comparisons of the shape matrices obtained 
from the manual landmarking and DAA, performed 

Fig. 3 Principal component plots (PC) for PC1 and PC2 obtained for the shape analysis using the “Poisson” meshes, comparing the results 
between (a) manual landmarking with 754 landmarks and sliding semilandmarks and the DAA method using kernel widths of (b) 40.0 mm, yielding 
45 control points, (c) 20.0 mm, yielding 270 control points, and (d) 10.0 mm, yielding 1,782 control points
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Fig. 4 Pairwise Euclidean distance comparisons between each specimen and the atlas, Arctictis binturong (MNHN 1936-1529) measured across 321 
axes. Distances are shown for the manual landmark data and “Aligned-only” meshes using Deterministic Atlas Analysis (DAA) with a kernel width 
of (a) 40.0 mm producing 45 control points, (b) a kernel width of 20.0 mm producing 270 control points, and (c) a kernel width of 10.0 mm 
producing 1,782 control points. Similarly, distances for Poisson meshes are displayed for (d) a kernel width of 40.0 mm producing 45 control 
points, (e) a kernel width of 20.0 mm producing 270 control points, and (f) a kernel width of 10.0 mm producing 1,782 control points. The red line 
represents the correlation between values with a 95% confidence interval. All correlations were significant (p < 0.01)

Table 1 Correlation comparisons between manual landmarking result and DAA for both the “Aligned-only” and “Poisson” meshes. The 
results show the correlations between matrices evaluated using the Mantel Test [42, 43], with results demonstrated using the Mantel r 
statistic, where a value of 0 shows no correlation, and 1 shows a perfect correlation, the Procrustes sum of squares, where a value of 0 
indicates a perfect fit and 1 indicates high dissimilarity, and the Procrustes root mean squares estimates (high value means more error) 
using the PROcrustean randomisation TEST (PROTEST) [44, 45]. The correlation between the percentages of variation (eigenvalues) 
across each of the 321 axes is also given where an  R2 value of 1 indicates a perfect fit. All results are significant (p < 0.01), with the best 
values for each statistic being highlighted in bold

Data Set Mantel r statistic Procrustes sum of squares Procrustes root mean squared 
error

Eigenvalue 
correlation 
(R2)

Aligned-only 40 0.2799 0.762 0.049 0.942

Aligned-only 20 0.2647 0.666 0.045 0.962

Aligned-only 10 0.3098 0.608 0.043 0.975

Poisson 40 0.6574 0.503 0.040 0.993
Poisson 20 0.6107 0.418 0.036 0.978

Poisson 10 0.5879 0.430 0.037 0.962
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using the Mantel test [42, 43] and the PROcrustean 
randomisation TEST (PROTEST) [44, 45], also dem-
onstrated the enhanced correspondence when using 
Poisson meshes (Table 1). The Mantel test showed a sig-
nificant improvement in the Mantel r statistic (where 
0 shows no correlation and 1 shows perfect correla-
tion) from the Aligned-only dataset (M = 0.285, SD = 
0.0229) to the Poisson mesh dataset (M = 0.619, SD = 
0.0354; t(2.02) = 11.384, p < 0.05). The Procrustes sum of 
squares (where 0 indicates no difference and 1 indicates 
a significant degree of dissimilarity) were significantly 
decreased from the Aligned-only dataset (M = 0.679, SD 
= 0.0778) to the Poisson mesh dataset (M = 0.450, SD = 
0.0461; t(2.02) = − 9.0064, p < 0.05) and the Procrustes 
root mean squared error (larger value shows more error) 
were also decreased from the Aligned-only dataset (M = 
0.0459, SD = 0.00262) to the Poisson mesh dataset (M = 
0.0374, SD = 0.00189; t(2.02) = − 10.652, p < 0.05). Due 
to these results, all further comparisons were exclusively 
conducted using the Poisson meshes.

Comparison between manual landmarking 
and landmark‑free methods
Examining the patterns of shape variation across the first 
four PC axes (Fig. 3, Additional File, Figure A6) revealed 
both differences and similarities between the manual 
landmarking and DAA results. The most notable differ-
ences were observed for Cetacea and Primates. In the 
manual landmarking analysis (Additional File, Data A11), 
cetaceans in PC1 were found far away from the other 
clades but were positioned much closer in the DAA, 
while still occupying the extreme values along PC1. Con-
versely, primates plotted much closer to the other taxa 
in the plot of the first two PC axes in the manual land-
marking approach but were more distinct in the results 
of the DAA, especially when using a higher number of 
control points. Rodents consistently formed a distinct 
cluster across all analyses, but this separation was more 
pronounced in the DAA. Notably, in the 20.0 mm and 
10.0 mm kernel width analyses, the rodent cluster shifted 
to PC2 rather than PC3, whereas it remained on PC3 for 
the 40.0 mm analysis. A key similarity across methods and 
kernel widths was the consistent clustering of carnivorans 
and artiodactyls in the central regions of the PC plots.

When comparing the results across all PC axes for 
the three DAA using Poisson meshes (Fig. 3, Additional 
File, Figure A6 and Data A7-9), we found a significant 
but moderate correlation with the manual landmarking 
results across all three kernel widths when measuring 
Euclidean distances amongst specimens (Fig.  4, Addi-
tional File, Table  A1). Notably, we observed a decline 
in the correlation between the manual landmarking 
and DAA as the kernel width decreased (the number of 

control points increased), with the most pronounced 
decline occurring when going from 40.00 m to 20.0 mm 
 (R2 decreased by 0.098). Removing both Cetacea and 
Primates from these comparisons yielded contrasting 
results. For the largest kernel width (40.0 mm), exclud-
ing these orders reduced the  R2 value from 0.532 to 0.384. 
In contrast, for the smaller kernel widths of 20.0 mm and 
10.0 mm, the  R2 values increased from 0.434 to 0.523 and 
from 0.425 to 0.525, respectively.

Reviewing the correlation in Euclidean distances 
within each of the major orders (> 10 specimens in the 
dataset; Additional Material, File A7), showed contrast-
ing patterns across different numbers of control points. 
For instance, the highest correlation with manual land-
marking was observed at a kernel width of 40.0 mm for 
Artiodactyla, Cetacea, and Pilosa. In contrast, all other 
orders: Carnivora, Chiroptera, Perissodactyla, Primates 
and Rodentia showed improved correlation as the kernel 
width decreased. The magnitude of these changes varied 
substantially between groups, with Carnivora showing an 
increase in correlation of 0.355 and Pilosa a decrease of 
0.50, while the correlation for Cetacea only varied by 0.08.

Further assessments of the impact of kernel width on 
the correlation between DAA and manual landmark-
ing, performed using the Mantel test, also showed a sig-
nificant but moderate correlation across all three kernel 
widths (Table 1). These correlations were slightly higher 
than those obtained using Euclidean distances (Fig.  4, 
Additional File, Table A1), although the maximum value 
of correlation remained moderate at 0.657. Consistent 
with previous results, correlation values decreased as 
kernel width decreased and the number of control points 
increased (Table  1), with the most pronounced decline 
occurring between 40.0 mm and 20.0 mm. The results 
from PROTEST again showed significant correlations, 
but here we found that a kernel width of 40.0 mm had the 
worse fit to the data, and 20.0 mm the best. The variation 
explained by each of the axes were also highly correlated 
and conserved across each analysis (Table  1, Additional 
File, Data A12-17).

Comparisons of estimated mean shape using heatmaps
Comparative visualisations of how shape variation was 
captured using manual landmarking and DAA were gen-
erated for a single specimen of the eight major orders 
(Fig.  5, Additional File, Figure A7). To do this, we pro-
duced heatmaps based on Euclidean distances meas-
ured between corresponding vertices (see Materials 
and Methods). Viewing the heatmaps revealed some 
similarities, but overall marked differences in how each 
method captured variation. For instance, when looking 
at C. calvus (Fig.  5), both methods identified substan-
tial negative displacement in the occipital region and 
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positive displacement in the eye sockets relative to the 
mean shape. On the other hand, the manual landmark-
ing approach detected minimal variation in the parietal 
region, whereas the DAA indicated significant nega-
tive displacement in this area. This pattern was consist-
ent among other specimens at the positive end of PC1 in 
the DAA, whereas those at the negative end of PC1 (e.g. 
Cetacea, Artiodactyla) showed reduced overall displace-
ment in the DAA compared to the manual landmarking 
approach, especially in the nasal and premaxilla regions.

Comparison of effects on downstream macroevolutionary 
analyses
After assessing the differences in shape variation esti-
mates, we evaluated their impact on downstream mac-
roevolutionary analyses. All datasets showed significant 
phylogenetic signal when measuring using  Kmult [54] (p 
< 0.01, Table 2), with the manual landmarking approach 

yielding the highest value, indicating that shape corre-
lated with phylogenetic relationships across all analyses. 
In the DAA, we found that the phylogenetic signal con-
sistently decreased as the kernel width decreased (as the 
number of control points increased, Table 2).

Fig. 5 Displacement heatmaps for the specimen, Cacajao calvus (NHMUK ZD 1928.4.27.6) generated by comparing its shape with the estimated 
mean shape of the 322 specimens across each analysis using Euclidean distances measured using the meshDist function in Morpho [46] v.2.12. 
Comparisons are shown for distances of the vertices in the C. calvus mesh and mean shape estimated in (a) the manual landmarking scheme 
with 754 landmarks and sliding semilandmarks, and for the geodesic mean shape estimated in the Deterministic Atlas Analysis (DAA) with (b) 
a kernel width of 40.0 mm producing 45 control points, (c) a kernel width of 20.0 mm producing 270 control points, and (d) a kernel width of 10.0 
mm producing 1,782 control points. The heatmaps demonstrate the differences in where shape variation is captured for both methods

Table 2 Comparison of phylogenetic signals measured using 
the physignal function applying the  Kmult statistic [54] through 
99 iterations using geomorph [47] v.4.05 in R. All values are 
statistically significant (p < 0.01)

Dataset Phylogenetic 
Signal

Manual 0.494

Poisson 40 0.477

Poisson 20 0.405

Poisson 10 0.303
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Next, we estimated morphological disparity and evo-
lutionary rates for specific ecological categories and com-
pared the results between the manual landmarking and 
each DAA dataset (Fig.  6, Additional File, Table  A2, and 
Data A18-19). We focused on the ecological categories of 
diet and locomotion as these can be reliably estimated for 
fossils and thus had values available for all specimens. For 
diet, we found no significant correlation across any of the 
kernel widths for the measures of morphological disparity 
(p > 0.05) but did find highly significant values for corre-
lations for evolutionary rate (p < 0.05), particularly for the 
kernel width of 10.0 mm when comparing DAA to manual 
landmarking. For locomotion, we recovered significant 
correlations for both measures of morphological disparity 
and evolutionary rates (p < 0.05), with the highest values 

of correlation found for the kernel width of 20.0 mm when 
compared with manual landmarking.

Discussion
To advance morphometrics into the era of big data, it is 
essential to develop methodologies that efficiently cap-
ture precise, high-dimensional morphological data across 
extensive and diverse datasets. However, this remains 
difficult due to the characteristics of current geometric 
morphometric approaches, especially their time intensive 
nature and lack of applicability to disparate datasets. In 
this study we sought to investigate if landmark-free meth-
ods, such as the Deterministic Atlas Analysis (DAA), can 
overcome these bottlenecks. Our analysis demonstrates 
that these methods are significantly quicker to apply, with 

Fig. 6 Comparisons of estimates on a logarithmic scale for (a, c) morphological disparity and (b, d) net rates of shape evolution based on (a, b) 
dietary categories and (c, d) locomotion modes, between the manual landmarking data containing 754 landmarks and sliding semilandmarks 
and Deterministic Atlas Analysis (DAA) with kernel widths of 40.0 mm producing 45 control points, 20.0 mm producing 270 control points, and 10.0 
mm producing 1,782 control points, calculated using the morphol.disparity and compare.evol.rates functions in geomorph [47] v.4.05. Each line 
represents the line of best fit with 95% confidence intervals
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the processing of all 322 meshes and analysis taking ~ 120 
hours compared to the ~ 750 hours required for expert 
manual labelling. When considering only the analysis 
using DAA excluding time spent on the generation of 
Poisson meshes (which may not be necessary if a single 
imaging approach is used, i.e. only CT scans), the time 
for generation of morphometric data is reduced from 
~ 750 hours down to eight hours. This improvement in 
efficiency is very promising, allowing for large-scale mor-
phological studies such as the one performed here to be 
conducted in the fraction of the time, thus significantly 
improving the scalability of geometric morphometric 
approaches.

The results of manual landmarking and DAA were 
almost all significantly correlated, including the compari-
sons between shape and the downstream macroevolu-
tionary analyses, but often these relationships were only 
moderate. The measured Euclidean distances showed 
correlations of 55% or lower, while the Mantel test 
reached a maximum of 65% (Table 1). This suggests that 
at least 35% of shape variation captured by one method 
remains unexplained by the other. Additionally, the sensi-
tivity of results to changes in the kernel width parameter 
indicates that spatial scale plays a crucial role in shaping 
the results. Here, we attempt to disentangle the major 
reasons for the similarities and differences between the 
results, and present suggestions to help maximise the 
potential of landmark-free methods in capturing accurate 
shape variation in the future.

Comparison of template selection on atlas generation
As previous studies have shown that the initial template 
selection can impact results [51–53], we began our study 
by testing three morphologically disparate taxa as our 
input template. In contrast to these previous findings, we 
found that the results remained highly consistent across 
templates, with the primary source of variation in the 
results arising from differences in the number of con-
trol points generated for each selected specimen, despite 
using a fixed kernel width (Additional File, Figure A1 
and A2, Data A1-3). While these templates represented 
a single specimen, the DAA approach was shown to miti-
gate this impact, which we attribute to the reduction in 
total deformation energy due to the construction of a 
new mean shape based on geodesic transformations [36, 
37]. Since the dataset remained constant across analyses, 
these transformations ensured consistency across differ-
ent templates.

Although impact was minimal, we still suggest that 
the specimen closest to the estimated mean shape in the 
manual landmarking analysis to be the most optimal, 
in this case, A. binuturong. This is because when using 
specimens with more unusual morphologies among the 

dataset (C. calvus and S. morckhoviensis) we found that 
there is a tendency to pull the template towards the 
centre of the principal component (PC) plots (Addi-
tional File, Figure A1). This phenomenon has also been 
observed in other automated shape analysis techniques 
including automated landmarking methods [21, 55]. 
Since this pipeline requires Type 1 manual landmarks to 
pre-process the data, we recommend future users visu-
alise the shape predictions of these landmarks to help 
guide the template selection.

Comparison of aligned‑only and Poisson meshes
Previous research on landmark-free methods has empha-
sised the importance of using meshes and surfaces with 
consistent geometry and topology to achieve accurate 
results [48, 49]. Our findings support this conclusion, 
as the DAA approach was significantly influenced by 
the mesh modalities used. Unlike manual landmarking 
approaches, which can more readily accommodate mixed 
mesh types [35, 56], landmark-free methods such as DAA 
may require standardisation when incorporating meshes 
with both open and closed surfaces. In our study, com-
bining CT scans (open surfaces) and surface scans (closed 
surfaces) without additional processing led to inaccura-
cies in the measured shape variation due to biases associ-
ated with mesh modality (Additional File, Figure A4 and 
A5, and Data A4-6).

To address this issue, we applied voxelisation and 
Poisson surface reconstruction [50] to generate Pois-
son meshes with watertight, closed surfaces (Fig.  1). 
This standardisation effectively eliminated the impact of 
mesh modality on the overall results (Fig.  3, Additional 
File, Figure A6, and Data A7-9), facilitating the integra-
tion of different data types within the same analysis. By 
removing the artefactual differences between mixed 
modalities, this approach significantly improved the cor-
relation between DAA and manual landmarking meth-
ods. We, therefore, recommend, when possible, these 
techniques should be applied, or analyses be performed 
only using a single mesh type (e.g. only surface scan or 
only CT-scans).

Comparison of landmark‑free and manual landmarking 
approaches
The significant but moderate correlation and low effect 
sizes (Fig.  4) between results obtained through manual 
landmarking and DAA, suggest that landmark-free meth-
ods can capture some aspects of shape variation captured 
in the manual landmarking approach, but also indicates 
that marked differences exist. The most notable similar-
ity of the approaches was the ability to capture the clas-
sic dolichocephalic-to-brachycephalic trend (variation in 
skull elongation vs. breadth) [57], though the pattern was 
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observed along PC1 in the DAA approach and PC2 in the 
manual landmarking analysis (Fig. 3, Additional File, Fig-
ure A6, and Data A7-9). This indicates that both methods 
are sensitive to varying lengths and widths of the crania 
but also implies that both methods prioritise different 
aspects of shape variation.

The differences in how shape is captured between the 
two approaches can be best highlighted by examining 
the changes in the measured Euclidean distances [41] 
(Fig. 4) and heatmaps (Fig. 5). From the former, we found 
that the cetaceans had reduced distances from the atlas 
in the DAA compared to manual landmarking, whilst 
primates exhibited greater distances. Examination of the 
heatmaps (Additional File, Figure A7) and aligned speci-
mens (Additional File, Figure A8) suggest that these dif-
ferences can be attributed to two main factors, the first 
is differences in scaling and the second is the way that 
measurement points are placed along the crania (Fig. 2, 
Additional File, Figure A3).

The difference in scaling is evident from the reduced 
negative displacement in the heatmaps for cetaceans 
(Additional File, Figure A7) and is further showcased 
when comparing the scaling of S. morckhoviensis in man-
ual landmark and landmark-free approaches against the 
mean shape estimated in both sets of analyses (Additional 
File, Figure A8). These scaling discrepancies primarily 
affect the premaxilla and nasal regions, which appear 
less distinct in DAA compared to manual landmarking 
because of the cetaceans being scaled to a smaller size 
(Additional File, Figure A7 and A8). The likely causes of 
these differences are twofold. First, because scaling in 
DAA is applied to the mesh based on the original land-
marks, morphological regions not captured by landmarks 
are not considered in the scaling process. Second, while 
manual landmarking allows for relative bone sizes within 
the cranium to be explicitly considered, the DAA mesh-
based scaling does not capture these relationships among 
elements.

The lack of representation of relative bone sizes and 
positions within the crania are also likely important fac-
tors that lead to differences in how shape variation is 
captured. For instance, the DAA approach appears to 
struggle in capturing telescoping in the cetaceans (where 
cranial bones overlap), leading to reduced differentiation. 
As such, the absence of the midline convergence in the 
parietal bones within the cranial vault is not detected 
and the changing of these bones relative to another can-
not be captured using this approach. By contrast, DAA 
increases the differentiation of primates from the other 
taxa by capturing greater variation in the cranial vault 
and brain case, which are sparsely sampled in the man-
ual landmarking approach. This is highlighted in the 
heatmaps of C. calvus (Fig.  5), where there is increased 

displacement captured in the cranial vault and parietal 
bones. Similarly, rodents appear more distinct in the 
first two PC axes in the DAA, which we attribute to an 
increased emphasis on the incisor region, which is less 
covered in terms of spatial points in the manual land-
marking approach. The inability to capture the cranial 
vaults and incisor regions is not an inherent limitation 
in the manual landmarking approach, but rather in this 
implementation. The landmark scheme used here which 
uses landmarks and curve sliding semilandmarks placed 
on sutures is applied to a phylogenetically broad dataset, 
leaving anatomical regions such as the cranial vaults and 
incisors without measurement points. To alleviate such 
issues, studies have sought to use a combination of fixed 
landmarks and surface sliding semilandmark patches [7, 
58], but these methods are often difficult to reproduce, 
time-consuming and thus are rarely applied to large data-
sets. Morever, these techniques become more difficult to 
apply when comparing more disparate taxa, as overlap-
ping homologous regions become harder to differentiate 
[6].

On the other hand, the DAA approach more readily 
provides this extensive spatial coverage with the number 
of control points easily being adjusted using the kernel 
width parameter. A key advantage of DAA is that this 
spatial coverage is both uniform and automated rather 
than user-selected, reducing biases associated with the 
pre-selection of specific morphological regions [59]. This 
standardisation ensures more consistent capture of shape 
variation, reducing the risk of missing or inadequately 
covering critical anatomical areas, a limitation observed 
in the manual landmarking analysis conducted here. 
Consequently, the expanded spatial extent facilitated by 
DAA may result in more accurate and comprehensive 
comparisons of morphological shapes.

This uniformity also presents challenges, particularly 
when anatomical variation is extensive and the overlap of 
homologous regions becomes less distinct. Since control 
points are not constrained by specific anatomical land-
marks, there is a risk of unintended blurring of anatomi-
cal regions, potentially leading to inaccuracies. This issue 
is especially pronounced when comparing specimens 
with large appendages, such as horns or teeth, to those 
without, or when analysing specimens with missing ana-
tomical features, such as the postorbital bar or zygomatic 
arches, alongside those that retain them.

These effects are evident in the results: as the number 
of control points increases, correlation in the Euclidean 
distances measured for within Artiodactyla (a group 
with prominent horns) declines from 0.436 to 0.358. 
Similarly, in Pilosa, where two-thirds of specimens lack 
zygomatic arches, correlation drops sharply from 0.588 
to 0.0351 (Additional File, Figure A7). Unlike manual 
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landmarking, DAA does not allow users to adjust meas-
urements to account for such anatomical anomalies, 
likely contributing to the lower correlation between the 
two methods. Our results show that this effect becomes 
more pronounced as the number of control points are 
increased. However, it is worth noting that landmark-
based approaches generally exclude structures that vary 
in presence entirely, meaning that regions that contribute 
to significant variation are left out of analyses, although 
methods that account for variably present regions with 
semilandmarks is discussed in Bardua et al. [7].

Effects on macroevolutionary analyses
All measured values of phylogenetic signal across both 
methods were statistically significant, but we observed a 
decline when transitioning from the manual landmarking 
approach to the DAA, with the most prominent decline 
occurring in the analysis using the largest number of con-
trol points (smallest kernel width, Table 2). This decline 
in this dataset likely results from capturing variation 
beyond biologically homologous structures [60], some-
thing that becomes more prominent as spatial resolu-
tion increases. While a greater number of control points 
enhances spatial coverage, it also introduces noise due to 
the proximity of measured points [5] and the increased 
placement of points in regions such as teeth, horns, and 
nasal cavities which are likely less consistently present or 
preserved across specimens (Fig. 2). Furthermore, miss-
ing (as opposed to absent) structures such as the delicate 
zygomatic arch or pterygoid in mammal skulls, presents 
a greater challenge in DAA, especially at higher spatial 
resolutions, as it artificially amplifies non-biological dif-
ferences between individuals with complete crania and 
those with missing structures.

Comparisons between the values of morphological dis-
parity (Fig. 6, Additional File, Table A2) obtained through 
manual landmarking and DAA consistently show lower 
magnitudes for the latter. However, as the kernel width 
decreases (and control points increase), the magnitude 
of disparity in DAA increases, with values for the 10.0 
mm kernel width becoming more comparable to those 
from manual landmarking. The higher values in manual 
landmarking are likely due to the selective placement of 
landmarks, which amplifies shape differences among 
individuals. In contrast, DAA, with its increased spatial 
resolution, gradually recovers these differences as more 
control points are introduced. On the other hand, the 
magnitude of the values obtained for the phylogenetic 
rates (Fig. 6, Additional File, Table A2), was less affected 
by the selection of method and kernel width. This dis-
crepancy likely stems from the fact that the measures of 
disparity are absolute values, while evolutionary rates are 

relative measures, comparing values within one class to 
another [47].

The levels of correlation between the measures of mor-
phological disparity and evolutionary rates also show 
some contrasts. The correlation for the evolutionary rates 
for both diet and locomotion were both high and signifi-
cant (Table A2), but only the latter was significantly cor-
related for morphological disparity. The lower levels of 
correlation in the morphological disparity measured for 
the diet are likely due to the presence of multiple classes 
that are occupied solely by cetaceans, which exhibit 
markedly different results between the manual land-
marking and DAA and are on the extreme values of the 
distribution. This difference leads to greater differences 
in these classes, resulting in a reduction in the overall 
correlation.

The retention of significant phylogenetic signal and the 
similarity in evolutionary rate estimates between manual 
landmarking and DAA with a larger kernel width sug-
gest that DAA captures biologically meaningful patterns. 
While using an excessive number of control points may 
sometimes weaken biological inferences, particularly 
when analysing incomplete specimens or those with 
significant morphological differences, it also provides 
enhanced spatial resolution. This higher resolution allows 
for the detection of subtle morphological variations that 
might otherwise be overlooked in manual landmarking, 
facilitating deeper insights into both phylogenetic and 
ecological dynamics.

Future improvements and applications for landmark‑free 
approaches
Our results highlight that landmark-free approaches are 
promising but further improvements are important for 
achieving the consistency and biological interpretability 
of analyses using manual landmarking methods. Many of 
the shortcomings of DAA were initially observed in man-
ual landmarking methods, but have since been addressed. 
For example, within the dataset here, the inclusion of 
fossil data led to having incomplete specimens that had 
missing anatomical structures. As noted previously, for 
groups such as Pilosa which had few complete specimens, 
the correlation with the manual landmarking data was 
lower, and progressively decreased as a larger number of 
control points were used. Furthermore, specimens with 
missing anatomical features, such as Euhapsis ellicottae, 
produced markedly different patterns of shape variation 
(Fig.  3). Unlike DAA, manual landmarking approaches 
can mitigate these issues through strategies such as miss-
ing data estimation [61] or interpolating missing land-
marks [62], and even without these interventions, manual 
approaches tend to produce less confounded results [35, 
56, 63]. Solutions to overcome these issues in DAA are 
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likely to come from emerging deep learning approaches, 
some of which have shown promise in predicting missing 
anatomical regions [64].

Another important consideration is the landmark-free 
methods like DAA often include anatomical features 
that would typically be excluded from manual landmark-
ing analyses. In this dataset, features such as horns and 
teeth were captured, which impacts shape compari-
sons by inflating the differences between specimens. For 
instance, when using when using a larger kernel width 
(fewer control points), specimens with large horns, such 
as Arsinoitherium zitelli, and large teeth, such as Odobe-
nus rosmarus, plotted in distinct areas of PC1, separate 
from the rest of their clade (Fig. 3). This effect is less obvi-
ous when using a higher number of control points, but 
the increased capturing of these areas also likely contrib-
utes to the decreased correlation between methods. The 
inclusion of such features can be seen as either an advan-
tage or a drawback, depending on the question, dataset 
and variation of interest for an analysis.

One area where DAA could be enhanced for more 
robust shape comparisons that retain homology is by 
applying it to isolated individual skeletal elements, for 
example each bone within the cranial structure. Applying 
DAA to structures made of multiple elements, impedes 
studies on the independent evolution of specific ele-
ments [65] and their relationship through phenotypic 
integration and modularity [66, 67], and may also pre-
vent obtaining accurate mesh scaling and comparisons 
between taxa. In contrast, manual landmarking tech-
niques that capture regions along suture lines help ensure 
the retention of homology, which likely explains why 
groups like Cetacea may appear more disparate from 
other taxa in the manual landmarking analysis than DAA. 
We, therefore, suggest that parcellating meshes into dif-
ferent anatomical regions using computer vision tech-
niques such as SPROUT [68], MeshCNN [69] or BounTI 
[70] and then applying DAA to the individual elements 
may help improve the biological interpreation of compar-
isons by focusing on homologus elements. Additionally, 
the ability to assign control points to defined anatomical 
regions, could help to more accurately capture biological 
variation and better preserve homology in the future use 
of landmark-free approaches. As noted above, the appli-
cation of DAA to complex structures or individual ele-
ments will depend on the question or dataset of interest.

Implications for future studies
Transitioning from manual landmarking to automated 
approaches, whether through automated landmarking or 
landmark-free methods such as DAA presents significant 
challenges. Nevertheless, only through rigorous testing, 

such as the analyses conducted here, can we refine these 
methods and extend their applications. If biologically 
meaningful results can be consistently obtained, as our 
analyses suggest is possible, these approaches hold the 
potential to be transformative in the field. They will help 
to reduce manual data handling, which will reduce both 
inter- and intra-operator errors commonly associated 
with manual landmarking studies [71, 72]. The efficiency 
of extracting shape variation will also be significantly 
improved, allowing large-scale analyses that would tradi-
tionally take months or years to be completed in weeks 
or days. In an era of rapdily expanding phenotypic data-
sets, driven by increasing acessibility of 3D imaging tech-
nologies [73], the ability to swiftly and accurately analyse 
morphological variation is crucial.

Despite these advantages, methodological considera-
tions remain. One of the primary challenges in landmark-
free approaches such as DAA is the shift away from fixed, 
unambiguously homologous points for shape compari-
sons. While manual landmarking has long been the gold 
standard, its reliance on a limited set of homologous 
points, especially across phylogenetically distant taxa, 
can be both a strength and a limitation [59]. On the one 
hand, it ensures biological validity by limiting analyses to 
directly comparable (i.e. homologous regions) anatomical 
regions. On the other hand, it restricts spatial resolution 
and may exclude aspects of morphological variation that 
are relevant to broader evolutionary questions.

The potential benefits of increased spatial resolution 
in DAA become apparent as finer control point distribu-
tions are implemented. The increased resolution allows 
for a broader capture of morphological diversity, includ-
ing anatomical features such as horns, which are often 
underrepresented in manual landmarking approaches. 
However, this improvement can also introduce greater 
variability in results, potentially reducing phylogenetic 
signal and altering interpretations compared to traditional 
landmark-based analyses [60]. This reflects that land-
mark-free methods such as DAA differ substantially from 
manual landmarking in their application, so these differ-
ences should be considered when comparing results.

At present, landmark-free methods like DAA are 
still evolving, and their applicability should be care-
fully considered, particularly when integrating datasets 
with mixed modalities that cannot be easily standard-
ised, or when dealing with specimens that have miss-
ing or incomplete anatomical structures. Nevertheless, 
with the advancements made in this study and previous 
research [24, 39], along with the proposed next steps out-
lined earlier, we believe landmark-free approaches offer 
a promising avenue for achieving high-resolution spatial 
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comparisons across taxa, even in cases where homolo-
gous points are scarce or difficult to define.

Conclusions
Landmark-free methods such as DAA represent a pow-
erful and innovative approach to morphometric analyses, 
particularly for large-scale comparative studies. By elimi-
nating the need for manual landmark placement, these 
methods enhance efficiency, reduce user bias, and allow 
for higher spatial resolution in shape comparisons. Our 
results demonstrate that DAA successfully captures bio-
logically meaningful patterns while maintaining congru-
ence with manual landmarking approaches.

Although some reductions in phylogenetic signal and 
variations in shape space stability were observed with dif-
fering control point densities, these challenges provide 
opportunities for refinement rather than fundamental 
limitations. Continued advancements in mesh parcella-
tion, automated segmentation, and computer vision tech-
niques for imputing missing anatomical regions and 
filtering non-homologous features (e.g., horns, teeth) are 
likely to further strengthen the reliability of landmark-
free methods. These developments will improve the abil-
ity of DAA to preserve homology and handle incomplete 
specimens, making it an increasingly viable alternative to 
traditional approaches.

Given its scalability and potential for high-resolution 
shape analyses across taxa with few shared homolo-
gous points, DAA and similar landmark-free methods 
are poised to become an integral part of the morpho-
metric toolkit. As the field progresses, integrating these 
approaches with existing methods may unlock new 
insights into morphological evolution while maintaining 
the rigor and biological validity of shape analyses.

Materials and methods
We obtained  .ply meshes and geometric morphometric 
data for manually collected landmarks and semiland-
marks from Goswami et al. [40]. This dataset comprised 
322 crown and stem placental mammals, including 207 
extant and 115 extinct species (Additional file, data A20).

The manual landmarking scheme consisted of 66 three-
dimensional (3D) landmarks and 69 semilandmark curves 
collected for the left side of the skull, utilising Stratovan 
Checkpoint (Stratovan, Davis, CA, USA). Landmarks and 
semilandmarks were imported into R v.4.3.1 for analy-
sis, where curves were resampled to a common number 
of semilandmarks and slid to minimise bending energy 
using Morpho [46] v.2.11, which measures and optimises 
local shape differences versus the mean shape. General-
ised Procrustes analysis in geomorph [47] v.4.05 was then 
used to register the landmarks, resulting in a total of 754 

3D landmarks and sliding semilandmarks (Additional 
file, Data A21-22). Principal component analysis was per-
formed using Procrustes-aligned 3D data in R.

Mesh processing
To facilitate a direct comparison between the manual 
landmarking data and the Deterministic Atlas Analy-
sis (DAA) method, it is essential to remove any effects 
of translation, rotation, and scaling. To achieve this, we 
applied a Procrustes transformation to standardise all 
322 meshes, using the rotmesh.onto function in Morpho 
[46] v.2.12. This function aligns each mesh to a target 
landmark configuration by applying a rigid-body trans-
formation (translation and rotation). When scaling is 
enabled, it also performs a scaling adjustment based on 
generalised Procrustes analysis (GPA), minimising the 
least-squares differences between corresponding input 
and reference landmarks according to the ratio of their 
centroid sizes. In our analysis, all data were mapped 
onto the coordinates of the first mesh in our dataset 
specifically that of Acinonyx jubatus, using the mirrored 
manual landmark data, which had not undergone GPA-
based scaling, as the reference (Additional File, Data 
A22). This approach ensured the dataset was free of size-
related effects, allowing for direct comparisons of shape 
variation.

The meshes in the selected dataset were produced 
using a combination of computed tomography (CT) 
and surface scanning techniques (see Additional File, 
data A20), resulting in the varied properties among the 
meshes. Notably, the CT-derived meshes have open sur-
faces (Fig.  1a), while surface scan data is characterised 
by closed surfaces. Previous studies have indicated that 
these differences in topology can significantly influence 
the outcomes of landmark-free methods [48, 49]. Thus, 
we aimed to investigate the impact of utilising mixed 
modalities when comparing shapes through the DAA 
method. To address potential effects stemming from the 
presence of both open and closed surfaces we created two 
distinct input datasets: (1) “Aligned-only” meshes, which 
comprise the original aligned meshes with both open and 
closed surfaces, and (2) “Poisson” meshes, which consist 
exclusively of watertight closed meshes.

To generate these watertight meshes, we used voxeli-
sation and segmentation in Dragonfly v.2021.3 (Object 
Research Systems, Canada) to initially close any open 
holes. Subsequently, to ensure that the meshes were 
watertight and to evenly redistribute the faces and ver-
tices across the mesh, we applied a Screened Poisson 
distribution [50] in Meshlab v.2023.12 [74]. The Poisson 
reconstruction algorithm focuses on the reconstruction 
of smooth surfaces while approximating the underlying 
point clouds, as described by the equation [50]:
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Where �χ is the Laplacian of the scalar function, 
which defines the implicit surface to be reconstructed, 
∇· denotes the divergence operator and V is a vector field 
derived from the normals of the point cloud data. The 
purpose of the �χ function is to preserve the topology 
and geometric properties of the mesh by aligning it with 
that of V.

Once meshes for both input datasets for DAA were 
processed, we decimated the “Aligned-only” and “Pois-
son” meshes to 50,000 faces using a quadratic mesh 
decimation approach using trimesh v.3.19.4 in Python 
v.3.8.8. This decimation was conducted to reduce compu-
tational demand while maintaining the overall geometric 
topology.

Deterministic Atlas Analysis (DAA)
Deterministic Atlas Analysis (DAA) is a method based 
on large deformation diffeomorphic metric mapping 
(LDDMM), which compares shapes by applying diffeo-
morphic transformations within 2D or 3D ambient space. 
DAA is unique in that it learns a template shape which 
corresponds to the average of the selected dataset [33], 
in this case the 322 selected specimens. However, before 
estimating this mean shape, the method requires the 
selection of an initial template from within the dataset. 
Given that previous studies suggest a single template may 
bias results [51–53], we tested three different specimens 
as the template chosen based on the manual landmark-
ing results. Specifically, we selected Arctictis binturong to 
represent a shape close to the mean, Cacajao calvus as 
an intermediate form, and Schizodelphis morckhoviensis 
as an extreme shape.

For each initial template, DAA automatically estimates 
a new mean shape that represents the average morphol-
ogy of the 322 specimens. This process relies on geodesic 
regression, a method that operates within a Riemannian 
manifold [36, 37], enabling the generalisation of shape 
differences across curved surfaces in higher-dimensional 
space. For the geodesic regression model that best fits 
the collection of meshes (Ci)i=1,...,n observed at times 
(ti)i=1,...,n , the alignment is optimised by minimising a 
loss function, which is mathematically defined as [34]:

Where f(T , q, (µi)i=1,...,n) represents the total cost of 
aligning template T  to all obseved specimen shapes Ci 
across the dataset, with the summation performed over 
all specimens n . The term d �q,µi(T ),Ci  quanti-
fies the deformation distance between the transformed 

�χ ≡ ∇ · ∇χ = ∇ .V.

f(T , q, (µi)i=1,...,n) =

n
∑

i=1

(

d
(

�q,µi (T ),Ci

))

+ R(q,µi))

template �q,µi and the observes shape Ci . This transfor-
mation is parameterised by the momenta q and the mean 
shape estimate µi , which collectively describe the opti-
mal deformation trajectory. The term R(q,µi)) serves as 
the regularisation function, allowing smoothness in the 
deformations and preventing overfitting to local varia-
tions. Through this testing, we found that A. binturong, 
the shape closest to the mean in the manual landmarking 
analysis was the best performing initial template. Sub-
sequently, we tested a range of Gaussian kernel widths: 
40.0 mm, 20.0 mm, and 10.0 mm, to assess the influ-
ence of this parameter on capturing shape variation. The 
Gaussian kernel width determines the spatial extent of 
the diffeomorphic comparisons through a smoothness 
constraint. This spatial extent is controlled by generat-
ing control points p, which serve as references for shape 
comparisons, effectively replacing traditional landmarks. 
Within this framework, the deformations for a set of n 
control points can be defined as follows [34]:

Where (qi)i=1,...,n represents the control points, each 
associated with the momentum vectors (momenta) 
(µi)i=1,...,n that generate a vector field X within 3D 
space. Specifically, the term X(x) described the vector 
field at position x . Here, the size of the kernel width 
is inversely related to the number of control points, 
meaning a larger kernel width results in fewer control 
points. The spatial extent of these points is mathemati-
cally defined through a Gaussian kernel as follows [34] :

Where x and y represent points in space, σ is the ker-
nel width (or scale), which determines the extent of 
the interaction between the points, and ∥x−y∥ is the 
Euclidean distance between x and y.

Within this framework, a time dynamic is prescribed 
to the control points and the momenta, which corre-
spond to the geodesic equation considered in the ambi-
ent space. Within Hamiltonian equations these are 
described as [34]:

Within this system these equations are solved using 
the numerical integration methods of Euler and Runge-
Kutta, to approximate the trajectory of the control 
points and momenta over time. Each iteration of the 
data involves computing convolutions between the 
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2
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control points and momenta within a quadratic form to 
update the system dynamics.

When using meshes, deformations can be described 
through their vertices (vp)p=1,...,d and their connectivity. 
For each mesh it is possible to compute the centres 
(cp)p=1,...,f  and normals of the faces or edges (np)p=1,...,f  . 
In this context, two types of distances are considered to 
quantify the differences between meshes. The first 
measures the current pointwise distance between cor-
responding points of two meshes defined as:

Where KW  is the gaussian kernel with the width σW  . 
The second measure is the varifold distances between 
meshes which can be described as:

Where KW  is the gaussian kernel with the width σW . 
Based on this mathematical framework, we executed 
the analyses using Deformetrica 4 [33, 34]. All analyses 
were executed for 150 iterations using an initial step 
size of 0.01 and with the noise parameter set to 10.0.

Kernel principal component analysis (kPCA)
The DAA produces three key outputs: (1) the initial 
position of the control points in relation to the atlas, (2) 
the momenta for each of the 322 specimens that repre-
sent the measured deformations and (3) the final atlas 
template. To be able to compare the shape variation, 
we focus on comparing the values of the momenta. The 
initial properties of these momenta are non-linear due 
to the use of a geodesic on a non-linear manifold of dif-
feomorphisms [32]. Thus, to be able to compare these 
values, the results must be projected into linear space. 
To do this we use non-linear kernel principal compo-
nent analysis (kPCA) [38]. This technique differs from 
traditional PCA and is more appropriate here as it can 
handle non-linear data. It can do this by projecting the 
momenta into a higher-dimensional space, which then 
makes the data linearly separable. This is done by calcu-
lating the dot product of the mapped data points [38]:
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Which is projected into the principal component 
space:

Where V k is the k -th eigenvector in the feature space 
and αk

i  are the components of the k -th eigenvector from 
the kernel matrix decomposition.

When using a manual landmarking approach, the num-

ber of PC axes is defined by the number of specimens (n − 
1), in this case 321 axes. As a result, for the DAA analyses, 
we opted to project the measured momenta into 321 PC 

axes to align with the results from the manual landmark-
ing. For the kPCA, each axes represents the maximum 
variance of the kernel matrix as opposed to the original 
space as is the case with traditional PCA. Each axis is still 
ordered in relation to the amount of variation described for 
the data. This projection into 321 axes was conducted using 
1000 iterations and a kernel gamma of 2.5 ×  10−6, where the 
gamma value determines the width (or smoothness) of the 
kernel.

All analyses (DAA and kPCA) were executed on a work-
station running Ubuntu (22.04.2) for Windows, equipped 
with an Intel(R) Core (TM) i7-7700 CPU operating at 3.60 
GHz, 64.0 GB of RAM, and an NVIDIA GeForce RTX 
2090 graphics card with 8.0 GB of dedicated GPU memory.

Comparing the manual landmarking and landmark‑free 
methods
To compare the results obtained from manual landmarking 
with those generated by each DAA, we assessed a variety 
of statistical measures. First, to estimate the correlation in 
shape measurements between individuals estimated using 
the two distinct methods and across kernel widths, we cal-
culated the Euclidean distances from each specimen to the 
atlas specimen, A. binturong. This was done across all 321 
axes for both the manual landmarking and each DAA. This 
distance is defined as [41]:

(

V k .φ(x)
)

=

N
∑

i=1

αk
i (φ(xi).φ(x)).
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Where, p, q are two points in Euclidean n-space,qipi 
are Euclidean vectors, starting from the origin of space 
(initial point). We then compared the distances derived 
from the manual landmarking with those from the DAA, 
employing bivariate plots and assessing their correlations 
using linear regression models in R v.4.3.1. This analysis 
allowed us to quantify the overall correlations across the 
entire dataset.

To further evaluate the correlation between the two 
methods, we measured the overall correspondence 
between the distance matrices, using two complemen-
tary approaches. First, we applied a Mantel test [42, 43] 
to assess the statistical correlation between the matrices. 
This works by measuring the association of pairwise dis-
tances between each of the selected matrices. Second, we 
used the PROcrustean Randomisation TEST (PROTEST) 
[44, 45] to directly quantify the degree of overlap between 
the matrices. This test evaluates the significance of the 
Procrustes fit between two different configurations. Both 
analyses were performed using vegan [75] v.2.6 in R. We 
applied both techniques across all 321 axes to assess the 
overall correlation between datasets, conducting each 
across 9999 permutations.

We also measured the correlation between the percent-
age of variation (eigenvalues) explained by each of 321 
axes for the manual landmarking and DAA, using linear 
regression models to determine the overall correlation 
and statistical significance of each result.

Comparison of methods using heatmaps
To examine how the estimates of shape variation corre-
late with the measurements obtained directly from each 
cranium, we generated heatmaps for all eight orders that 
contained more than ten specimens in the analysis (Addi-
tional File, Figure A7). Generating these heatmaps relied 
on comparing each of the selected specimens with the 
estimated mean shapes from both methods.

For the manual landmarking approach, we first mir-
rored the GPA-aligned manual landmark data to ensure 
coverage on both sides of the crania. Using these mir-
rored landmarks, we calculated the average position 
of each landmark across the 322 specimens to create 
a mean landmark configuration. For each of the eight 
selected specimens, we then warped the mesh to this 
mean configuration, using the specimen-specific man-
ual landmarks as the reference matrix to quantify the 
deformation. This transformation was performed using 
a thin-plate spline interpolation via the tps3d function 
in Morpho [46]. The meshDist function, was then used 

d(p, q) =

√

√

√

√

n
∑

i=1

(qi − pi)
2

to measure the Euclidean distances of the corresponding 
vertices between the original and warped meshes.

For the DAA method, the mean shape of the popula-
tion is automatically estimated during atlas construction 
using the geodesic regression function and is provided 
directly as an output [33]. Consequently, a separate mor-
phing procedure based on control points is not required. 
Since the mean shape varies depending on the selected 
kernel width, we compared each of the eight specimens 
with the mean shape predicted under each analysis. To 
do this, we used the meshDist function in Morpho [46] to 
calculate the Euclidean distances between corresponding 
vertices of each specimen and the predicted mean atlas 
shape. Heatmaps were used to visualise the magnitude of 
the Euclidean distances.

Comparisons of downstream macroevolutionary analyses
We assessed the impact of using each of the different 
methodologies on the downstream macroevolutionary 
analyses. First, we randomly selected a phylogenetic tree 
as used in Goswami et al. [40] to pair with the results of 
the morphometric analyses. Using geomorph [47] v.4.05 
in R, we calculated and compared the phylogenetic signal 
for each analysis through the physignal function, apply-
ing the  Kmult statistic [54] through 99 iterations to test 
the fit of the data with the phylogeny. Next, we measured 
and compared the morphological disparity and evolu-
tionary rates associated with different dietary categories 
and locomotor types (the only complete categories for 
all of the 322 specimens), employing the morphol.dispar-
ity and compare.evol.rates functions in geomorph [47] 
v.4.05, respectively. For the evolutionary rates estimate, 
we used a simulation-based method, running each analy-
sis through 100 iterations to ensure robust comparisons. 
We compared the values of morphological disparity and 
evolutionary rates for the manual landmarking and DAA 
using Spearman’s rank correlation coefficient and pro-
ducing bivariate plots in R.
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