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Abstract
Land degradation in Ethiopia is escalating due to high population density and the shift from tree-based agricultural 
systems, like agroforestry practices (AFP), to monoculture farming. These land use changes, compounded by 
climate change, threaten biodiversity and soil resources. Key soil health parameters, such as glomalin, soil 
aggregation, and aggregate stability, are negatively impacted by such practices. Agroforestry is proposed as 
a sustainable alternative to address these challenges. This study aimed to evaluate the effects of AFPs on soil 
glomalin, soil aggregate stability (mean weight diameter, MWD), and the relationship between soil aggregates and 
soil organic carbon (SOC). Undisturbed soil samples were collected from 0 to 30 cm and 30–60 cm depths in four 
land use types: home garden (HAFP), cropland (ClAFP), woodlot (WlAFP), and trees on soil and water conservation-
based agroforestry (TSWAFP). Results showed significantly higher glomalin-related soil protein (GRSP) in HAFP and 
WlAFP compared to ClAFP and TSWAFP (p < 0.05). HAFP also exhibited the highest soil aggregate stability (SAS) and 
MWD, followed by WlAFP. These findings suggest that agroforestry practices can significantly enhance soil health, 
ecosystem stability, and long-term sustainability, contributing to land restoration efforts.
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Introduction
Globally, since the 20th century, land degradation has 
escalated and aggravated due to ecological degradation, 
increasing of population pressure, and unwise use of 
land resources [1]. The conversion of natural ecosystems 
to agriculture-based systems is known to cause large 
losses of soil organic carbon (SOC), and biodiversity 
losses including arbuscular mycorrhizal fungi diversity 
[2, 3]. Land degradation have impacted soil aggregation 
and aggregate stabilizing compounds [4]. Consequently, 
the glomalin-related soil protein (GRSP), SOC, mean 
weight diameter (MWD), and soil aggregate stability 
(SAS) distributions are expected to be influenced by land 
degradation.

Among the soil organisms, arbuscular mycorrhizal 
fungi (AMF) are widely distributed plant symbiotic soil 
microorganisms that form symbiotic relationships with 
the roots of more than 80% of higher plants [5]. The glo-
malin-related soil protein (GRSP), a glycoprotein organic 
compound produced from AMF [6] is a persistent 
organic substance with a strong cementing effect [7]. This 
compound is the source of soil organic carbon [8] and 
contains 30–40% carbon [9] and 3–5% nitrogen, 4–6% 
hydrogen, and 33–49% oxygen [10]. The GRSP plays 
a fundamental role in the formation of soil aggregate 
structure [11], which binds soil particles to form aggre-
gates [12]. They also form soil aggregates and improves 
soil structure and stability against erosion [13]. These 
soil aggregates are the fundamental structural units that 
govern the dynamics of soil organic matter and nutrient 
cycling [14]. Soil with good structure can improve the 
soil microbial community, enrich biodiversity, promote 
nutrient cycling, and reduce soil carbon emissions [15]. 
Besides, soil aggregate stability also prevents soil erosion 
and other environmental problems caused by soil degra-
dation [16].

The AMF composition, GRSP, SOC, and mean weight 
diameter (MWD) contribute to enhance soil fertility and 
productivity. However, the conversion of land use sys-
tems coupled with intensive agricultural practices is the 
most direct anthropogenic factor that affects soil carbon 
storage, and soil structure [17, 18] and AMF community 
structure [19]. Moreover, studies indicated that agricul-
tural practices have negatively impacted vegetative cover 
[20], SOC [21], soil aggregation [22] and the distribution 
of soil aggregate-associated soil organic carbon (SAA-
SOC) [23]. It has also been reported that land manage-
ment practices affect GRSP production significantly [24], 
and its production could be hampered by agricultural 
practices that can destroy microbial habitat and decrease 
AMF growth [25]. On the other hand, the concentration 
of GRSP in soil depends on different factors like AMF 
richness, plant community composition, land use types, 
and soil properties [26].

Agroforestry (AF) is the combinations of trees with 
crops or pasture systems, being a sustainable and ecolog-
ical way of using land [16]. This system enhances organic 
matter accumulation in soils through the inclusion of 
cover crops and permanent vegetation, also promotes soil 
microbial populations and SOC [27]. Research has shown 
that AF systems produce a higher spore and better dis-
tribution of AMF spores than monoculture [28]. Those, 
in turn, may improve GRSP [8], SOC [29], soil structure, 
and soil aggregate size distribution (SASD) compared to 
monoculture [30]. Moreover [29] and [31], also found a 
higher amount of soil aggregates and MWD under rub-
ber-based AF systems than sole rubber practices. This is 
because AF systems can leave more plant residues on the 
soil surface [32]. It was also reported that the continuous 
input of organic matter from AF systems can provide a 
favorable environment to biological activity [33, 34] and 
[35] identified the increased contents of aggregate asso-
ciated SOC under conserved fallow land as these sys-
tems contributes large carbon inputs. Conversely [29, 3], 
reported decreased SOC content on land which has been 
converted from forest to arable. Similarly, the conversion 
of natural ecosystems for agricultural purposes leads to 
changes in the content of SOC and other binders in the 
soil, adversely affecting soil aggregation [4]. The change 
in SOC may affect agricultural resilience against the 
exhibit risk of climate change [36].

Several studies have been conducted in southern Ethi-
opia, among which, the effects of indigenous AFS on 
biodiversity, carbon stocks, and litter fall [37, 38] and 
the diversity and composition under enset-coffee based 
homegarden agroforestry practices HAFP [39], and cof-
fee based AF [40] could be mentioned. Additionally, the 
composition and abundance of AMF under different land 
use types were studied [41]. In the same region, the AMF 
community under the savannah ecosystem of Nachi Sar 
National Park was also investigated and reported higher 
richness and diversity from un-encroached plots [42]. 
The impacts of different land use types on phosphorus 
in acidic agricultural soil [43] and the physiographic fea-
tures of agricultural lands and soil fertility management 
[44] have been carried out. This elucidates that no studies 
have been made on the effects of different AFP on GRSP, 
MWD, SASD, and SAASOC in the drylands of southern 
Ethiopia. This study aimed: (1) to compare the differences 
in GRSP (EGRSP and TGRSP) contents, MWD, SASD, 
and SAASOC across different AFPs in two soil depth lay-
ers and (2) to ascertain the presence or absence of rela-
tionship between bulk soil carbon and GRSP (EEGRS 
and TGRSP), and MWD and SASD with SAASOC. The 
research also hypothesized that the soil stability, particle 
size distribution, GRSP contents and fraction of SAA-
SOC would be improved in tree based AFPs and different 
according the differences in land management practices.
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Methods
Study area
The study was carried out in the Southern Nations, 
Nationalities, and Peoples’ Region (SNNPR) and located 
in the southwestern parts of Ethiopia (5° 50’ 26’’– 6° 12’ 
48’’ N, 38° 03’ 02’’–38° 18’ 59’’ E) [44]. Different agro-
climatic zones exist in the region but the moist to sub-
humid warm subtropical climate areas are situated 
between1500-2300  m elevation are the most important 
in terms of agricultural productivity. The AFS/practices 
are predominant practices in the region. In this region of 
the country, the mixed framing system is the most pre-
dominant land management practice which encompasses 
the combination of annual crops, perennial crops, live-
stock, and forestry practices at farm level. In the region, 
most of the areas have potential for perennial crops like 
enset (Ensete ventricosum), coffee (Coffea arabica), roots, 
and tuber crops. The annual crops, trees, and rearing of 
livestock under homestead AFP are common agricultural 
practices [45]. There are different zones and special dis-
tricts within in the SNNPR, of which Wolaita and Kem-
bata Tembaro are zones where the AFP has been widely 
Practiced. The Wolaita and Kembata Tembaro zones 
were selected to conduct the current study (Fig. 1). This 
is because of the presence of different types of AFP in 

these zones. Agroforestry practices are the different types 
of specific land management practices that consists of 
the three most important components namely tree, live-
stock and annual crops at farm level. The area receives 
bimodal rainfall: the small and medium rainfall seasons 
usually occur between March to May, whereas the high-
est rainfall is in July and August, and the mean annual 
temperature is 20.1  °C. Agricultural activities in this 
region heavily depend on the bimodal rainfall seasons. 
However, these rainy seasons are often unpredictable, 
leading to periods of drought and food insecurity for 
local populations during certain month. The dominant 
soil of the area is nitosol [46] with an acidity level ranges 
from moderately to strongly acidic [47] and such soils are 
sesquioxidic.

Though there are different types of AFPs in the 
SNNPR, the Wolaita and Kembata Tembaro zones share 
almost the same types of AFPs. In the areas, the home 
garden based agroforestry practice (HAFP) character-
ized with more than 75% covered by different woody spe-
cies like: Ensete ventricosum, Persea americana, Coffee 
arabica, Grevillea robusta, Cordia africana, Ficus vasta, 
Mangifera indica, and different types of vegetables, roots, 
tuber crops and herbs. This practice is located near to 
residence home; consequently the application of organic 

Fig. 1 Map of the study area showing the location of the study districts in Wolaita and Kembata Tembaro zones in south nations and nationalities peoples 
regional state in Ethiopia
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inputs is widely known, less disturbed land use practice, 
while minimum or zero application of inorganic fertil-
izers. The other commonly practicing AFP is woodlot 
based agroforestry practices (WlAFP), in this practices, 
the eucalyptus species are the predominant plant species 
and acacia species, Croton macrostachyus, and Junipe-
rus procern are also the most common farmers ‘growing 
woodlot species. Likewise the HAFP, WlAFP is the less 
disturbed and hardly usage of inorganic fertilizers to such 
type of practice. In the case of cropland-based agrofor-
estry practices (ClAFP) and trees on soil and water con-
servation-based agroforestry practices (TSWAFP), the 
scattered different types of woody species such as Per-
sea americana, Mangifera indica, Cordia africana, Ficus 
vasta, Musa, grass species, and Croton macrostachyus 
grow commonly. On the other hand, using high inorganic 
fertilizer in ClAFP and TSWAFP types is a common 
trend due to the fact that they are highly disturbed and 
cultivated agricultural fields.

Sampling design
The zones, districts, and villages were selected from the 
SNNPR region using a multistage sampling design. The 
sample districts were selected by using stratified sam-
pling techniques which means the districts were clas-
sified based on agroecology (highland, midland and 
lowland) and the presence of different agroforestry 
practices, while the villages and sampling plots were 
selected by using random sampling techniques, taking 
into account the slope, AFP type, altitude, agroecology, 
and land management practices, while at the village level, 
the AFPs were selected by using random sampling meth-
ods. The soil samples were collected from sampling units 
of (four different types of AFPs): HAFP, ClAFP, WlAFP 
and TSWAFP types. To collect data from different AFPs, 
different-sized plots were established namely: a 40  m x 
40 m plot was established, for both ClAFP and TSWAFP 
types; a 10 m x 10 m plot for WlAFP; and a 20 m x 20 m 
plot for HAFP. In this study, we have used different plot 
size for different agroforestry practices (four types) 
this is because vegetation types and coverage varies as 
land management practices varies in these agroforestry 
practices. For instances, high vegetation coverage in 
homegarden and woodlot based agroforestry practices 
as compared to cropland/parkland and trees on soil and 
water conservation based agroforestry practices. Soil 
samples were collected from 128 soil samples (4 districts 
x 4 different AFPs x 2 villages x 2 farms x 2 depth layers) 
to analyse GRSP, MWD, SASD, and SAASOC content. Of 
128 soil samples (64 soil samples from upper soil depth 
& 64 soil samples from the lower soil depth), 32 sam-
ples were collected from each of sample districts which 
implies that 8 soil samples were also collected from each 
of AFP types.

Extraction and determination of glomalin related soil 
protein (GRSP)
The extraction and determination of EEGRSP and 
TGRSP were performed according to Wright and Upad-
hyaya [7], and Janos et al. [48]. To extract the EEGRSP, 
one gram of air-dried soil was placed in centrifugates 
tubes of 15 mL with 8 mL of 20 mM sodium citrate at 
pH 7.0, autoclaved for 30 min at 121 oC. Then, samples 
were centrifuged for 30 min (10,000 g); the supernatant 
was poured off and stored it at 4  °C until analysis. For 
TGRSP, the soil pellet was resuspended in 8 mL of 50 
mM sodium citrate at pH 8.0 and autoclaving at 121 oC 
for 60 min. Extractions were repeated until the superna-
tant became straw- colored, indicating that the reddish 
brown glomalin had been removed. All the supernatants 
from the TGRSP extractions were put together, brought 
up to a known volume and stored at 4 oC until analysis. 
Then, Bradford-reactive substances (BRS) were measured 
to determine the GRSP content in the extracts (1 mL) by 
measuring absorbance at 595 nm of Bio-Rad protein dye 
reagent (Bio-Rad 500-0006) in 96-well flat, microplates 
with bovine serum albumin as the standard solution.

Dry and wet soil aggregate stability and aggregate size 
distribution
To estimate the MWD and SASD (dry and wet), the 
undistributed soil sample was collected using a shovel 
from two soil depth layers (0–30 and 30–60 cm). In the 
dry sieving method, the MWDd and SASDd were deter-
mined by using the procedures of [49]. In this procedure, 
100  g of air dried soil that passed through 8  mm sieve 
was sieved by using 5, 2, 1, 0.5, 0.25, and 0.053 mm sieves 
that were nested each other and mounted on a vibratory 
sieve-shaker, adjusted to a 3 mm shaking amplitude, with 
a sieving time of 2 min.

Then, the percentage of soil aggregates left on the sieve 
after dry sieving measured to estimate the dry soil aggre-
gate of size distribution (SASDd) and dry mean weight 
diameter (MWDd). Subsequently, the aggregates with 
different sizes of SASD were stored at room temperature 
for analysis of soil macroaggregate and microaggregate 
associated SOC of the fraction. In case the wet sieving 
method, the soil aggregate size distribution (SASDw) and 
mean weight diameter (MWDw) were estimated accord-
ing to the procedure of [50]. In this method, 100  g of 
air-dried soil that passed through 8 mm sieve was sieved 
using 5, 2, 1, 0.5, 0.25, and 0.053 mm sieve types. The soil 
sample was pre-wetted for 30  min in deionized water 
before the sieving process had been started and then 
transferred to the top of nested sieves. The nested sieves 
were then arranged in columns that have been dipped in 
water for 5  min carefully during up and down process. 
The remaining aggregate particle on each sieve was oven 
dried at 105 oC for 24  h that resisted break down, and 
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then the dry mass was used to estimate the MWD wet 
sieved fraction and SASD. Additionally, the resistant soil 
particles from each sieve were transferred into beakers 
and stored for analysis of the associated SOC of macro-
aggregate and microaggregate soil fraction.

Based on the weights of these soil aggregates, the fol-
lowing variables were estimated:

 
SASDd = Mdi

Mt
x 100 (1)

Where SASDd is dry soil aggregate stable size distribu-
tion, Mdi is the mass of dry aggregates on each size, and 
Mt is the total mass of dry-sieved soil

 MWDd =
∑

n
i=1XiWi (2)

where MWDd the mean weight diameter of dry soil 
aggregates, Xi is the mean diameter of each sieve fraction 
(mm), and Wi is the proportion of the total sample mass 
in the corresponding size fraction,

 
SASw = Mwi

Mt
x 100 (3)

Where SASDw is the wet soil aggregate stable size dis-
tribution, Mwi is the mass of wet aggregates on each size 
and Mt is total mass of wet-sieved soil.

 MWDw =
∑

n
i=1XiWi (4)

where MWDw is the mean weight diameter of wet soil 
aggregates, Xi is the mean diameter of each sieve fraction 
(mm), and Wi is the proportion of the total sample mass 
in the corresponding size fraction.

Determination of soil physicochemical properties
Soil particle size was determined using the hydrometer 
method [51]. Organic carbon content was analyzed using 
the [52], while total nitrogen was measured according 
to [53]. Soil pH was determined by suspending soil in 
deionized water at a 1:2.5 soil-to-water ratio [54]. Avail-
able phosphorus was measured using the Olsen method 
[55].

Data analysis
The normality of the data was assessed using histo-
gram and the Shapiro-Wilk test before analysis. A two-
way analysis of variance (ANOVA) with a general linear 
model (GLM) was used to examine variations in GRSP 
(EEGRSP and TGRSP), MWD (dry and wet soil aggregate 
stability), soil aggregate stability distribution (SASD), 

and the soil macro- and microaggregate-associated SOC 
across different AFP types and soil depth layers. Tukey’s 
Honestly Significant Difference (HSD) post-hoc test was 
applied for pairwise mean comparisons between the 
AFPs and the studied variables. All statistical analyses 
were performed using R programming version 4.2.1, with 
a significance level set at p < 0.05.

Results
Glomalin related soil protein (GRSP)
In this study, the mean concentrations of EEGRSP and 
TGRSP varied significantly (P < 0.05) among the differ-
ent AFP types (Fig. 2). The soils from the HAFP had the 
highest EEGRSP and TGRSP content, followed by the 
WlAFP, TSAWFP, and ClAFP types. The EEGRSP and 
TGRSP content in HAFP and WlAFP increased signifi-
cantly in both soil depth layers as compared to ClAFP 
and TSWAFP. In the study, on the topsoil (0–30  cm), 
the EEGRSP content in HAFP and WlAFP increased by 
211.78% and 163.38%, respectively, compared to that in 
the ClAFP type. Similarly, the TGRSP content on topsoil 
in HAFP and WlAFP increased by 120.18% and 121.09%, 
respectively, compared to that in the ClAFP type. Con-
versely, in the subsurface soil (30–60  cm), the EEGRSP 
and TGRSP content in HAFP and WlAFP increased by 
209.26% and 121.07%, respectively, compared to that in 
the ClAFP. The EEGRSP and TGRSP content showed a 
decreasing trend with the increasing intensity of agricul-
tural activities, use of inorganic fertilizers, and increasing 
soil depth (Fig. 2).

Dry and wet soil aggregates
The soil aggregate stability was significantly affected by 
different types of AFPs and soil depth layers. Dry mean 
weight diameter (MWDd) and wet mean weight diameter 
(MWDw) were significantly higher in HAFP compared 
with ClAFP types and increased by 218.99% (MWDd) and 
219.05% (MWDw). The mean of the MWDd in the differ-
ent AFPs was 5.04, 4.29, 1.99, and 1.58 for HAFP, WlAFP, 
TSWAFP, and ClAFP, respectively, while the mean of 
the MWDw was 4.02, 3.57, 1.84, and 1.26 for HAFP, 
WlAFP, ClAFP, and TSWAFP, respectively (Fig.  3). This 
shows that the cropland-based AFP types (ClAFP and 
TSWAFP) had lower MWDdry and MWdw in the soil than 
the other types of AFP. On the other hand, the AFP with 
tree-based management practices (HAFP and WlAFP) 
showed significant superiority over the rest of the AFP 
(ClAFP and TSWAFP) in both MWDd and MWDw.

The amount of MWDd and MWDw was greater in the 
top soil layer (0–30  cm) and decreased with soil depth 
in HAFP and WlAFP as compared to other AFP types 
(TSWAFP and ClAFP). However, in the case of subsur-
face (30–60  cm), the high remarkable values of MWDd 
and MWDw were registered under TSWAFP and ClAFP 
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Fig. 3 Mean weight diameter ((a) = dry mean weight diameter, (b) = wet mean weight diameter) under different agroforestry practices in drylands of 
southern Ethiopia; HAFP = homegarden agroforestry practices, ClAFP = cropland based agroforestry practices, WlAFP = woodlot based agroforestry prac-
tices, TSWAFP = trees on soil and water conservation measures based agroforestry practices. Bars with the same small letters are not significant at p < 0.05

 

Fig. 2 Mean of glomalin related soil protein (a = easily extractable glomalin related soil protein and b = total glomalin related soil protein) under differ-
ent agroforestry practices in drylands of southern Ethiopia; HAFP = homegarden agroforestry practices, ClAFP = cropland based agroforestry practices, 
WlAFP = woodlot based agroforestry practices, TSWAFP = trees on soil and water conservation measures based agroforestry practices. Bars with the same 
small letters are not significant at p < 0.05
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types. The results elucidated that the mean of MWDd in 
TSWAFP and ClAFP was 60.539% and 68.570% lower 
than HAFP at 0–30 cm of depth, respectively, while the 
mean of MWDd in TSWAFP and ClAFP was 54.091% 
and 68.540% lower than HAFP at subsurface soil layer 
(30–60 cm), respectively (Fig. 3).

The soil stable aggregate size class distributions
Soil stable aggregate stability class distribution (SASD) 
considerably varied with AFP type and soil depth ranges. 
The effect of different land management through AFPs 
on dry and wet SASD indicated that HAFP had a sig-
nificantly higher percentage of aggregate types, followed 
by WlAFP, compared to the intensive agriculture based 
AFPs types (ClAFP and TSWAFP) which had signifi-
cantly lower soil aggregates in all size classes (Fig. 4). In 
> 2 mm dry sieving, on topsoil layer (0–30 cm), the HAFP 
(31.51  g 100  g− 1 dry soil) and WlAFP (24.74  g 100  g− 1 
dry soil) had significantly higher aggregate fractions than 

TSWAFP (7.82  g 100  g− 1 dry soil) and ClAFP (5.68  g 
100 g-1 dry soil), while in wet sieving, on the same soil 
layer, the HAFP (25.49  g 100  g− 1 dry soil) and WlAFP 
(17.19  g 50  g− 1 dry soil) had significantly larger aggre-
gate fractions, followed by TSWAFP (8.36  g 50  g− 1 dry 
soil), and the lowest was recorded in ClAFP type (4.89 g 
100 g− 1 dry soil). Additionally, in both dry and wet siev-
ing and soil depth layers, the other aggregates (1–2, 
0.5-1, 0.25–0.5, 0.053–0.25, and < 0.053  mm) were also 
relatively higher for the topsoil layer (0–30  cm) than 
the subsurface soil (30–60 cm) among the different AFP 
types. In contrast, the soil aggregates under ClAFP and 
TSWAFP types, however, didn’t show a consistent trend 
with depth increment in the subsurface soil layer (Fig. 4).

Dry and wet soil aggregate associated with soil organic 
carbon
The dry and wet sieved aggregates and the SOC associ-
ated with macroaggregates were significantly different 

Fig. 4 The characteristics of dry (a and b) and wet (c and d) soil stable aggregate size distribution under different AFPs and soil depth variations, HAFP = ho-
megarden based agroforestry, ClAFP = cropland based agroforestry practices, WlAFP = woodlot based agroforestry practices and TSWAFP = trees on soil 
and water conservation measures based agroforestry practices, bars with the same small case letters are not significant at P < 0.05
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under different AFP types and depth variations. However, 
no significant variation was found in those associated 
with both macroaggregates and microaggregates by soil 
depth variation under the ClAFP type. The contents of 
SOC associated with macroaggregates of all AFP types in 
both dry and wet decreased with the decrease in particle 
sizes, while the contents of SOC associated with micro-
aggregates didn’t follow the same regular trends as mac-
roaggregates in subsurface soil depth. Additionally, the 

concentration of SOC associated with macroaggregates 
(> 0.25  mm) was higher than the amount of SOC asso-
ciated with that of microaggregates (< 0.25 mm) in both 
dry and wet aggregates on surface soil depth in all AFP 
types (Fig. 5).

There were comparable concentrations of SOC in 
HAFP and WlAFP in macroaggregates as well as micro-
aggregates, and they were considerably increased in these 
AFP types as compared to TSWAFP and ClAFP. In dry 

Fig. 5 The characteristics of dry (a and b) and wet (c and d) soil organic carbon (SOC) under soil macroaggregate and micraggregate fraction under 
different AFPs and soil depth variations, HAFP = homegarden based agroforestry, ClAFP = cropland based agroforestry practices, WlAFP = woodlot based 
agroforestry practices and TSWAFP = trees on soil and water conservation measures based agroforestry practices, bars with the same small case let-
ters are not significant at P < 0.05. *SOC = soil organic carbon, magt = macroaggreagte soil fraction, migt = microaggregate soil fraction, 0–30 = topsoil, 
30–60 = subsoil
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sieved aggregates on surface soil (0–30  cm), the HAFP 
(34.89%) increase in SOC associated with macroaggre-
gates was followed by WlAFP (16.17%) and TSWAFP 
(1.33%) as compared to ClAFP type and decreased as 
depth increased. In the case of microaggregates in dry 
sieved aggregates on the surface soil layer, the highest 
(2.83%) SOC associated with microaggregates was found 
in HAFP, whereas the lowest (2.08%) was found in ClAFP. 
On the other hand, in wet sieving on surface soil depth, 
the distribution trends of SAASOC concentrations were 
also high in HAFP, followed by WlAFP and TSWAFP 
and the lowest was found under ClAFP and decreased as 
depth increased (Fig. 5).

Soil properties
In this study, the soil was slightly acidic with mean pH 
values ranges from 6.20 to 7.07 in ClAFP and HAFP 
respectively. The highest SOC content was found in the 
HAFP type being followed by the WlAFP in both soil 
depth layers, while the lowest was obtained in ClAFP 
where the intensive agriculture is the common trends in 
the study area. On the other hand, the soil total nitrogen 
concentration varied from 0.20 to 0.35%. pH, carbon, 
nitrogen and silt concentrations were significantly differ-
ent between the AFP types (p < 0.05) (Table 1).

Discussion
Glomalin related soil protein (GRSP)
The current study confirmed that EEGRSP and TGRSP 
concentration varied significantly (P < 0.05) among differ-
ent AFP types. The concentrations of GRSP in this study 
are consistent with those reported by [56], who reported 
values ranging from 2.0 to 14.8 g/kg in TGRSP in differ-
ent ecosystems, Welemariam et al., [57] who reported 
values between 3.21 and 18.16 g/kg for various land uses, 
and Singh et al., [26], who found 3.6 to 12.7 g/kg of GRSP. 
However, the GRSP in this study was significantly higher 
than the findings of Bai et al., [58], who observed values 
of 0.68–1.18 mg g-1 in deserts and 0.25 to 1.8 mg g-1 in 
semiarid grasslands [59]. The type of land management 
practices could bring variations in abundance and diver-
sity of arbuscular mycorrhizal fungi (AMF) [60], that 
influences the concentrations of GRSP. Moreover, in this 
study, the findings indicated the clear differences in the 
concentration of GRSP among different AFPs types. It 
has also been reported that land management practices 
affect glomalin production [24]. This is because gloma-
lin production is hampered by agricultural practices that 
destroy microbial habitat and decrease AMF growth [25]. 
In line our findings, higher glomalin concentration was 
found under conserved tree based land use systems as 
compared to the purely cultivated agricultural fields [61, 
62]. This is likely due to the more extensive root networks 
in soils dominated by trees, which contribute to higher 
AMF and glomalin concentrations compared to agricul-
tural soils, where roots are typically smaller and shorter-
lived. Tree based system sustains the sustaibility of soil 
productivity in improving the soil microganisms and this 
in turn improves the glomalin contents and ecosystem 
sustaibility [63–65]. This implies that this could be one of 
the possible reasons for the higher glomalin concentra-
tions under the HAFP and WlAFP land use types as com-
pared less tree based fields (ClAFP and TSWAFP).

The contents of EEGRSP and TGRSP were highest 
among HAFP, followed by WlAFP, and lowest among 
cultivated agricultural practices (ClAFP and TSWAFP). 
This is because the HAFP and WlAFP soils are largely 
undisturbed compared to agricultural soils (ClAFP and 

Table 1 The mean of soil properties under different agroforestry 
practices in drylands of Southern Ethiopia
Soil 
Parameters

Depth 
(cm)

Agroforestry Practices
HAFP ClAFP WlAFP TSWAFP

pH (1:2.5 soil: 
water)

0–30 7.07 ± 
0.23a

6.20 ± 0.19c 6.34 ± 0.21bc 6.39 ± 
0.12abc

30–60 7.02 ± 
0.07ab

6.42 ± 
0.11abc

6.50 ±a0.22bc 6.25 ± 
0.06c

Organic carbon 
(%)

0–30 3.62 ± 
0.22a

2.77 ± 
0.22ab

3.16 ± 0.13ab 2.69 ± 
0.13b

30–60 3.23 ± 
0.16ab

2.46 ± 
0.07b

2.87 ± 0.29ab 2.77 ± 
0.19ab

Total nitrogen 
(%)

0–30 0.46 ± 
0.03a

0.23 ± 
0.01 ab

0.31 ± 0.02ab 0.20 ± 
0.01ab

30–60 0.29 ± 
0.01ab

0.19 ± 
0.02ab

0.24 ± 0.02b 0.22 ± 
0.02ab

Available phos-
phorus (mg/kg)

0–30 12.63 
± 
0.57a

13.84 ± 
0.90a

11.65 ± 0.25a 12.07 ± 
1.33a

30–60 11.06 
± 
0.23a

12.79 ± 
0.66a

10.66 ± 0.37a 11.91 ± 
1.01a

Sand (%) 0–30 73.25 
± 
1.09a

67.25 ± 
2.07a

67.50 ± 2.67a 65.25 ± 
1.72a

30–60 69.88 
± 
1.07a

66.75 ± 
2.13a

67.63 + 2.75a 68.81 ± 
0.95a

Clay (%) 0–30 9.31 ± 
1.49a

10.00 ± 
0.35a

8.75 ± 0.66a 8.00 ± 
0.81a

30–60 8.69 ± 
1.27a

9.75 ± 1.22a 9.31 ± 1.29a 8.19 ± 
1.12a

Silt (%) 0–30 17.44 
± 
1.61b

22.75 ± 
1.90ab

23.75 ± 
2.80ab

26.75 ± 
2.49a

30–60 21.44 
± 
0.96ab

23.50 ± 
1.92ab

23.69 ± 
1.92ab

23.00 ± 
1.81ab

*Units within a rows followed by the same letter/s are not significantly different 
at p < 0.05. Homegarden based agroforestry practices (HAFP), cropland based 
agroforestry practices (CLAFP), woodlot based agroforestry practices (WlAFP) 
and trees on soil and water conservation based agroforestry practices (TSWAFP)
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TSWAFP). This results are similar with previous findings 
of [12] found a 2.35–2.56 fold higher GRSP amount in 
forest land compared to farmland. It was also indicated 
that the soils from the forest had the highest TGRSP, 
while the cultivated field showed the lowest values [66]. 
Other studies, [67–68, 57] have also reported a higher 
amount of TGRSP under conserved areas compared to 
non-conserved lands, and Singh et al., [26] documented 
significantly higher GRSP under woody vegetation lands 
than soils of cropland. The presence of higher EEGRSP 
and TGRSP in HAFP and WlAFP could be due to the 
presence of high AMF root colonization in these systems 
[60] as glomalin is the product of AMF [69], and higher 
glomalin concentrations where AMF is more abundant. 
Furthermore, Ji et al., [64] and Yang et al., [65] reported 
higher glomalin concentration from the tree based land 
use systems as compared to monculre based agricultural 
systems. On the other hand, both EEGRSP and TGRSP 
concentrations were strongly affected by agricultural 
practices. The decrease in EEGRSP and TGRSP concen-
trations due to agricultural practices, which is in line with 
studies of Singh et al., [26] and Spohn and Giani [4]. This 
reduction of GRSP in croplands might have been the 
result of agricultural practices that resulted in changes 
in physical and chemical conditions of the soil that could 
have negative effects on GRSP content [10, 70]. Addition-
ally, the EEGRSP and TGRSP concentrations were found 
to decrease while going down the soil depth layers. This 
finding agreed with the reports of Wang et al., [71], Wang 
et al., [6], who reported a higher glomalin levels in sur-
face soils compared to the subsurface layers. This trend 
is likely due to AMF morphotypes being primarily lim-
ited to the upper soil surfaces, where soils are richer in 
SOC [60, 65, 72]. A similar trend was observed in a study 
of Posidonia oceanica from the Western Mediterranean, 
where agricultural activities negatively impacted AMF 
compositions and GRSP production [73].

The dry and wet soil stable aggregates
This study demonstrated the significant impact of dif-
ferent AFPs on mean weight diameter (MWD). It was 
observed that the decrease in MWDd and MWDw at the 
surface layer (0–30 cm) was 68.57% and 68.54%, respec-
tively, in the ClAFP, while in TSWAFP, the decrease was 
60.54% and 54.09%, following agricultural practices when 
compared to HAFP. The MWD of the different AFP types 
followed the order: HAFP > WlAFP > TSWAFP > ClAFP, 
with the maximum value observed in HAFP. This findings 
are consistent with previous research reports of Chit-
tamart et al. [74], Pan et al. [75]. Baranian Kabir et al., 
[76], who reported the highest MWD value in grassland 
compared to agricultural cropland, and Cheng et al., [77], 
Jia et al., [78] demonstrated a significantly higher MWD 
value in places with vegetation-based land systems. 

Similarly, Xu et al., [79], Dou et al., [80] who found the 
highest MWD values in natural shrubland compared to 
farmland. Gupta et al., [29] also reported higher MWD in 
agroforestry (AF) systems compared to monoculture sys-
tems. The higher MWD in vegetation-based agricultural 
practices (HAFP and WlAFP) can be attributed to the 
presence of high woody species litter fall and SOC con-
centration [60, 81], which contribute to soil aggregate for-
mation [82, 83]. These results align with those of Lawal et 
al., [84], Ashagrie et al., [85], who reported a decrease in 
soil aggregate values under agricultural practices. More-
over, MWD was significantly lower in cropland than in 
forestland [16, 86]. The lower values of MWD in the agri-
cultural cropland (ClAFP and TSWAFP) compared to the 
less disturbed lands might be the lack of soil cover, less 
SOC, and increased erosion, which have been investi-
gated previously Cates et al., [87]. Regarding depth varia-
tion, under all AFP types, the mean MWDd and MWDw 
were lower in subsurface layers (30–60 cm) compared to 
the surface layer (0–30  cm). This finding is agreed with 
studies by Dai et al., [88], Li et al., [89] and Bougma et 
al., [90], who reported higher MWD in surface soil layers, 
while Meena et al., [91] observed decreased MWD val-
ues in subsurface soils. The lower SOC content and root 
biomass in deeper soil layers likely result in less MWD 
formation [92, 93]. However, this finding contradicts the 
results of [94], who found lower MWD in forest soils 
compared to agricultural soils, possibly due to the clay 
and silt contents of the soil [95].

The soil stable aggregate size class distributions
The HAFP fields exhibited the highest macroaggre-
gate size (> 2 mm) distribution, followed by WlAFP and 
TSWAFP, with ClAFP having the lowest macroaggre-
gate size distribution. This finding agrees with studies by 
Gupta et al., [29] and Gama-Rodrigues et al., [31], who 
reported a higher macroaggregate size class under AF 
systems compared to cropland. These results are also 
consistent with studies by Okolo et al., [96], Zeng et al., 
[93], Welemariam et al., [57] who reported higher macro-
aggregates in vegetated areas than bare land., who found 
higher macroaggregate concentrations in vegetated areas 
than in bare land. The higher organic carbon content in 
HAFP, resulting from the presence of high woody species, 
may promote the formation of larger macroaggregates. 
Additionally, AFPs are known to enhance organic mat-
ter accumulation through plant biomass inputs, which 
promote macroaggregate formation [27]. The presence of 
high organic carbon and low disturbances in HAFP soils 
would have higher proportions of macroaggregates than 
those subjected to agricultural disturbance [97]. Higher 
carbon concentrations that acts as a cementing agent for 
macroaggregates formation [98]. In the least disturbed 
AFP types, the highest percentage of all aggregate size 
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class distributions were found in the upper surface layer 
(0–30 cm) in both dry and wet sieving, which aligns with 
the findings of [99], who found that surface soils from 
perennial tree-based systems are influenced by plant 
residues.

Continuous agricultural practices have degraded mac-
roaggregates, and soil erosion may further contribute to 
the decline in large macroaggregates in disturbed AFP 
types (ClAFP and TSWAFP). The decrease in macroag-
gregate content in these agricultural fields can also be 
attributed to the shortage of binding agents required 
for macroaggregate formation [100]. This suggests that 
land use change and varying land management prac-
tices significantly alter soil structure and aggregate size 
distribution. In northern Ethiopia, Okolo et al., [96] 
reported higher microaggregates (< 0.25 mm) than mac-
roaggregates, and Gupta et al., [29] also found a higher 
proportion of microaggregates in maize crops compared 
to other perennials. This difference could be attributed 
to the mechanical breakdown of macroaggregates into 
microaggregates due to agricultural activities [101].

The dry and wet soil aggregate associated soil organic 
carbon
The different AFP and depth variations significantly 
affected the SOC associated with macroaggregates 
(> 0.25  mm size) and microaggregates (< 0.25  mm) both 
in dry and wet sieved fractions (Fig. 5). In the upper sur-
face (0–30 cm), the HAFP type had significantly (p < 0.05) 
higher (3.17%) macroaggregate-associated SOC, followed 
by WlAFP (2.73%), TSWAFP (2.38%) and the lowest 
(2.35%) was measured from ClAFP. These results align 
with the findings of Singh et al., [29], who reported higher 
macroaggregate-associated SOC in forest land compared 
to croplands. Similarly, Welemariam et al., [26], Xiao et 
al., [102] reported higher amounts of macroaggregate-
associated SOC under exlosures and undisturbed sites. It 
was also reported that SOC concentrations in aggregates 
considerably increased with vegetation coverage [103, 
104]. The increase in SOC content in macroaggregates 
may result from the integration of smaller aggregates into 
larger ones [105] and the high input of organic matter 
under less disturbed lands [96]. Howevre, Novara et al., 
[106] found that SOC concentration in microaggregates 
(< 0.25  mm) was significantly higher compared to that 
of macroaggregates (> 0.25 mm), and Hu and Lan [107], 
reported the highest aggregate associated SOC concen-
tration in microaggregates compared to macroaggre-
gates. These observed differences might be the inherent 
soil variability [108], and can also be attributed to differ-
ences in the sequestration potentials of different tree spe-
cies [109].

In all four types of AFP, the SOC content associated 
with aggregates with various particle sizes was highest 

at the surface depth layer (0–30  cm); this was compa-
rable with the results of Tang et al., [110]. The increased 
amount of macroaggregates and microaggregates-asso-
ciated with SOC in surface layers is due to the presence 
of plant residues, root exudates, and soil organisms, 
which contribute to the increase in SOC contents [88–
89, 111]. In the case of agricultural fields (from ClAFP 
and TSWAFP fields), the lower macroaggregates and 
microaggregate-associated SOC were measured (Fig.  5). 
Similar trends were observed by Welemariam et al., [57] 
found a lower (2.2%) amount of macroaggregate-associ-
ated SOC from non-conserved grazing lands. Weidhuner 
et al., [112] also observed lower SOC associated with 
macroaggregates in agricultural fields. The low macro-
aggregate and microaggregate-associated SOC in ClAFP 
and TSWAFP could be due to low biomass input caused 
by agricultural disturbance [102, 107]. On the other hand, 
the SOC associated with macroaggregates was higher 
than the SOC associated with microaggregates under 
both dry and wet sieved fractions, except in wet sieved 
under WlAFP type. In line with this, Welemariam et 
al., [57] and Gelaw et al., [113] observed higher SOC in 
macroaggregates than in microaggregates in northern 
Ethiopia.

Conclusion
The present study results showed that soil aggregation 
and distribution of size fractions, glomalin related soil 
protein and aggregate fraction of associated soil organic 
carbon content significantly modified under different 
agroforestry practices. Tree based practices as homegar-
den agroforestry practices and woodlot agroforestry 
practices were less detrimental compared to scattered 
tree-based croplands on studied variables. Consequently, 
homegarden agroforestry practices followed by wood-
lot agroforestry practices lead to higher values of mean 
weight diameter, soil aggregate size distribution (dry and 
wet sieved fraction), glomalin related soil protein content 
(easily extractable glomalin related soil protein and total 
glomalin related soil protein) and soil aggregate associ-
ated soil organic carbon. Macroaggregate fraction also 
reached the highest values in soils under homegraden 
agroforestry practices and the lowest was in cropland 
based agroforestry practices. In case of microaggregate 
fraction, the highest values were recorded in woodlot 
agroforestry practices and the lowest was in trees on soil 
and water conservation based agroforestry practices. 
This indicates the homegarden agroforestry practices 
and woodlot agroforestry practices promoted the accu-
mulation of soil organic carbon and glomalin related soil 
protein as result of formation and stability of soil aggre-
gates. From the ecosystem sustainability point of view, 
homegarden agroforestry practices followed by woodlot 
agroforestry practices are the agroforestry practices types 
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that could improve glomalin related soil protein, mean 
weight diameter, soil aggregate stability distribution and 
its associated soil organic carbon. This implies that how 
the managed agroforestry practices can improve the eco-
system stability through the increasing of soil glomalin 
concentration, soil organic carbon and soil aggregate 
stability.
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