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Abstract 

Background  In infected hosts, immune responses trigger a systemic energy reallocation away from energy stor-
age and growth, to fuel a costly defense program. The exact energy costs of immune defense are however unknown 
in general. Life history theory predicts that such costs underpin trade-offs between host disease resistance and other 
fitness related traits, yet this has been seldom assessed. Here we investigate immune energy cost induced by infec-
tion, and their potential link to a trade-off between host resistance and fat storage that we previously exposed 
in sheep divergently selected for resistance to a pathogenic helminth.

Results  To this purpose, we developed a mathematical model of host-parasite interaction featuring individual 
changes in energy allocation over the course of infection. The model was fitted to data from an experimental infec-
tious challenge in sheep from genetically resistant and susceptible lines to infer the magnitude of immune energy 
costs. A relatively small and transient immune energy cost in early infection best explained within-individual changes 
in growth, energy storage and parasite burden. Among individuals, predicted responses assuming this positive energy 
cost conformed to the observed trade-off between resistance and storage, whereas a cost-free scenario incorrectly 
predicted no trade-off.

Conclusions  Our mechanistic model fitting to experimental data provides novel insights into the link 
between energy costs and reallocation due to induced resistance within-individual, and trade-offs among individuals 
of selected lines. These will be useful to better understand the exact role of energy allocation in the evolution of host 
defenses, and for predicting the emergence of trade-offs in genetic selection.
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Background
The costs of immunity remain a central and long-stand-
ing question in evolutionary ecology, medical and ani-
mal sciences [1–3]. In particular, a fundamental life 
history assumption is that the evolution of host defense 

strategies against pathogens critically depends on energy 
and other nutrient costs to deploy an immune response 
[4, 5]. Immune costs induced upon infection have also 
been associated with a diversion of nutritional energy 
away from storage, reproductive and growth processes 
in order to meet the concurrent energy demands of the 
infected host [6–8]. According to the allocation hypoth-
esis, such energy reallocation could instigate trade-offs 
between host resistance (i.e. the ability to limit within-
host pathogen replication) and other fitness-related traits 
such as growth or reproduction [9, 10]. In particular, 
those trade-offs are expected to arise when energy supply 
falls short, such as during infection-induced anorexia [11, 
12]. However, in many cases trade-offs are not detected 
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[13–18], putting the concept of costly immune defense 
into question [19].

Trade-offs can be undetected when hosts manage to 
mitigate the negative fitness consequences of an energy 
costly immune response. For instance, hosts can simul-
taneously adjust their energy intake or other components 
of their energy budget to meet the extra energy demand 
of immune activation [20]. Yet, quantifying the immune 
energy demand remains challenging. Most previous 
attempts have relied on changes in the rate of energy 
use for basal metabolism (e.g. resting metabolic rate) in 
infected hosts [7, 21, 22]. However, even though infection 
should lead to an increase in metabolic rate, the direc-
tion and the magnitude of this effect seem actually highly 
inconsistent across studies and host-parasite systems 
[23]. In some cases, hosts even enter into an hypometa-
bolic state along with infection-induced anorexia to pro-
mote particular resistance [24] or tolerance mechanisms 
[12]. In certain of those situations, negative effects on 
fitness-related traits seem to be primarily caused by this 
reduction in intake rather by the energy costs of immune 
deployment [25, 26]. Furthermore, since metabolic tra-
jectories after pathogen exposure strongly depend on 
host-parasite dynamics [27], it is increasingly clear that 
attempts to measure the costs of immune activation 
should consider the changes in energy intake and energy 
expenditure triggered by the immune response over the 
course of infection.

In this study, we investigated host resistance dynamics, 
assuming that the level of resistance reflects the strength 
of an immune response deployed by the host. Under this 
assumption, we investigated energy-allocation trade-offs 
involving host resistance by answering two questions: 
(Q1) Does host resistance entail a substantial induced 
energy cost over the course of a parasitic infection in a 
vertebrate host? (Q2) If so, does this energy cost conform 
to an observed trade-off between host resistance and fat 
storage?

To this purpose, we used experimental data of domes-
tic sheep artificially challenged with the blood-feeding 
gastrointestinal nematode Haemonchus contortus. In this 
model system, complex immune effector mechanisms 
[28–30] confer genetic differences in host resistance to 
infection [13, 15]. In our studies, hosts were from lines 
divergently selected for resistance to short-term infec-
tious challenge with H. contortus, so that responses of 
resistant (R) and susceptible (S) hosts should reflect a 
genetic difference in the strength of induced immunity 
against this specific parasite [31]. We previously detected 
a trade-off among lines between host resistance (using 
parasite fecal egg counts ( FEC ) as proxy) and the gain 
in fat reserves (using backfat thickness ( BFT  ) as proxy), 
with the R line having significantly lower FEC and lower 

BFT   than the S line [32]. However, a statistical analy-
sis of the traits dynamics observed during the infection 
(Fig. 1Ai-v) could not determine if the reduced fat accu-
mulation of R sheep compared with S sheep can be fully 
explained by their lower feed intake (i.e. without the need 
to divert energy from fat storage towards immunity to 
satisfy immune energy costs), or if it partly resulted from 
an energy allocation away from fat deposition to parasite-
specific, potentially costly, immunity. It is not a priori 
obvious which of the two scenarios would best conform 
to the observed trade-off (Fig. 1B). In this study we devel-
oped a mechanistic mathematical model of host-parasite 
interactions featuring dynamic changes in energy allo-
cation. We fitted this model to the experimental data to 
answer the biological questions above. Thereby, we tested 
two alternative hypotheses (Fig. 1B): (H1) there are non-
negligible immune energy costs associated with host 
resistance, and the observed lower fat storage in the R 
line is the consequence of energy allocated away from fat 
storage to immunity to meet the higher immune energy 
demands in the R line, vs. (H0) immune energy costs are 
negligible, and the observed lower fat storage in the R line 
is the direct consequence of the more strongly reduced 
feed intake as a by-product of infection.

Methods
Inference approach and hypotheses
To test hypotheses H0 and H1, we combined previous 
experimental data with dynamic mathematical model-
ling. In brief, we developed two dynamic mechanistic 
models: one of host energy budget (using energy intake 
as a known model input) and one of host-parasite 
interaction, that were interconnected through a vary-
ing, potentially null, energy flow from feed to immu-
nity ( Eimmunity ) (see details in Model description). The 
coupled model (Fig.  2) was fitted to longitudinal data 
for each individual sheep (n = 42) allowing for individ-
ual variation in two virtual immune responses associ-
ated to specific stages of nematode infection [28, 30]: 
one acting early against larvae establishment ( IE ) and 
one acting later against parasite fecundity ( IF  ). The 
unknown unitary energy cost associated with these 
responses ( eIE and eIF , respectively) were used to test 
H0 and H1. They were assumed constant among indi-
viduals, just like the energy costs for maintenance, lipid 
and protein biosynthesis known from the literature 
[33]. Energy allocated to immunity was thus defined as 
Eimmunity = eIE · IE + eIF · IF .

By fitting the mechanistic model to the data, immune 
energy costs and the value of other parameters control-
ling the strength of IE and IF were inferred. In support of 
H1, we predicted that:
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(i)	positive values of population energy cost parameters 
eIE and eIF best explain the observed data,

(ii)	 the R and S lines differ in terms of energy allocation 
strategies between host resistance ( Eimmunity ) and 
host growth during infection,

(iii)	individual parameters controlling the strength of IE 
and IF differ between the R and S lines,

(iv)	energy allocation can generate a trade-off between 
host resistance and fat reserves, and

(v)	 individual growth parameters out-of-infection do 
not differ between lines.

Experimental data
We used data from an artificial infestation experiment in 
growing female lambs from two lines divergently selected 
for resistance to H. contortus. Both lines originated from 
a prolific meat sheep breed (Romane) bred indoor at 
INRAE experimental facilities. Sheep were selected on 
their resistance to parasites based on FEC  measures, 
following a unique protocol comprising two successive 

infections as outlined in detail in [34]. In the initial popu-
lation, 274 naïve lambs were infected with a single dose 
of 10,000 third stage larvae (L3) of H. contortus to stimu-
late a primary immune response; 4 weeks later they were 
treated (0.2 mg/kg of live weight of ivermectin; Oramec, 
Boerhinger Ingelheim, Lyon, France); after 2 weeks of 
recovery they were re-infected with a single dose of 
10,000 L3 to simulate a secondary immune response and 
finally treated 5 weeks later. At the end of first and sec-
ond infection, FEC  was recorded just before treatment 
and those measures were combined to estimate animal 
breeding values for resistance used as selection criterion 
to generate the two divergently selected lines.

This study then used data from 42 ewe lambs from the 
second generation (G2) of divergent selection for resist-
ance (R = low FEC , n = 21) or susceptibility (S = high 
FEC , n = 21). At G2, the divergence in FEC between R 
and S sheep reached a 1.9 phenotypic SD (σp) and 3.8 
genetic SD (σg) from the mean FEC of initial population 
(G0). Specifically, female G2 lambs were infected early 
to stimulate a primary immune response, and again at 4 

Fig. 1  Experimental data integrated in this study to infer the energy cost of immunity. A Data represent responses to a parasitic challenge (10,000 
third-stage larvae of Haemonchus contortus per animal given orally) observed in growing female sheep resistant (R; n = 21) or susceptible (S; n = 21) 
to infection with H. contortus. It supports a trade-off between host resistance (i, ii) and the gain in fat reserves (iv), possibly mediated by feed intake 
in early infection (v). In addition, an energy cost of parasite-specific immunity may contribute to the trade-off between lines (hypothesis H1), 
or not (hypothesis H0). B To test hypotheses H0 and H1, a dynamic mechanistic model of energy budget coupled with host–pathogen interaction 
was fitted individually to the observed data. Fig Ai-v were modified from [32]. Points represent adjusted means with their error bars representing 
95% confidence interval and asterisks indicate statistical difference between lines (ns: p > 0.1; †: p < 0.1; *: p < 0.05; **: p < 0.01; ***: p < 0.001)



Page 4 of 18Douhard et al. BMC Ecology and Evolution           (2025) 25:14 

months of age, following the same infection protocol as 
described above, except that the first dose was of 3,500 
L3/sheep to limit the potential negative consequences 
of infection on fertility at first mating (at 8–9 months 
of age). During the infection, lambs were fed ad libitum 
with a protein-rich concentrate (176.6 g of crude pro-
tein/kg of dry matter) and straw so that protein was not 
nutritionally limiting compared with energy. The longi-
tudinal data collected during the second infection were 
then used in this study to calibrate the host-parasite 
interaction model. Data included voluntary concentrate 
intake (in kg/d; measured daily with automatic feeders) 
and five other traits measured at day 0, 17, 24, 28, 31, 
and 35 post-infection: FEC  (in egg/g; measured by the 
modified McMaster technique), blood haematocrit (in 
%; measured by microhaematocrit centrifugation tech-
nique), body weight (in kg), back fat thickness ( BFT  , 
in mm; measured by ultrasound scan on both sides 
at the 12th– 13th lumbar vertebra (Easi- Scan™, IMV 
imaging)). Those traits could be linked to the model as 
shown in Fig. 1. Eintake was estimated from concentrate 
intake and diet characteristics (Table 1) assuming that 

concentrate was the main source of feed energy (i.e. 
straw intake was considered as negligible).

Model description
Overview
In accordance with experimental data, the model repre-
sents a growing non-reproducing sheep fed ad  libitum 
with a protein-rich diet, infected with a single dose of 
L3 (Fig. 2). Both the infection challenge dose and energy 
intake are assumed to be known and can be used as a 
model input. The host-parasite system includes two 
components: the parasite development within the host 
(from third stage infective larvae LI to reproducing 
adults Am andAf NL ), and the host immune responses 
against the infection. As for prey-predator models [41], 
these two components interact dynamically as parasitic 
load triggers the immune responses which in turn, act on 
parasite development. The immunological mechanisms 
by which animals have or acquire resistance to haemon-
chosis are highly complex and still largely unraveled 
[28]. Here the two latent immune response variables, 
IE and IF reflect an action on two key stages of parasite 

Fig. 2  Conceptual diagram of the host-parasite model coupled with a model of host energy budget to estimate the energy cost of immune 
responses from experimental data
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Table 1  List of model parameters

Parameter Definition Value Source

Parasites development
µLI; µLE;
µAm; µAf NL; µAf L

Mortality rates [per day] of LI, LE, and of Am, AfNL, AfL 0.18; 0.01; 0.015 [35]

pAm Proportion of LE that are males (the remaining propor-
tion 1—pAmare females)

0.5 assumed

kE0; kF0 Maximum transition rates from LI to LE (establishment), 
and from AfNL to AfL (fecundity)

2; 0.3 assumed

kA Constant transition rate from LE to Am and AfNL 0.62 assumed

τLI;τLE Minimum time delay (in days) from ingestion to estab-
lishment site, and from establishment to emergence

2; 15 [35]

F0 Maximum fecundity rate per capita (number of eggs 
per day and per adult female)

7000 [36]

ωLE; ωAm; ωAf NL
; ωAf L

Loss in HE per capita for parasite categories LE, Am, AfNL, 
and AfL, respectively

(× 1e−5) 15; 50; 50; 110 [37]

Host immune response
IE0.5; IF0.5 Levels of IE and IF at which kE and kF respectively, are 

reduced of 50%
5 assumed

αkE; αkF Shape factors of immune effects on kE and kF 3 assumed

ϕIE; ϕIF Per capita replication rates of IE and IF, respectively assumed to vary between individuals; estimated (individual level)

αIE Shape factor of parasite effect (LI) on IE replication 3 assumed

LI0.5 Level of LI at which IE replication is at 50% of its maximum 3000 assumed

IE0; IF0 Baseline levels of IE and IF 1 assumed

βIE; βIF Per capita loss rates of IE and IF, respectively 0.05 assumed

Host energy budget
αPm Scaling exponent ofPm 0.27 [33, 38]

Pm Protein weight at maturity [kg] assumed to vary between individuals; estimated (individual level)

Lm Lipid weight at maturity [kg]

βP Relative protein growth rate from birth to maturity [ kgαPm
.day−1]

β∗
P Relative protein growth rate during infection [ kgαPm.

day−1]

βWool Relative wool growth rate [day−1]

egrowth; emaint;
edep; emob

Unitary energy costs (in MJ/kg) of protein growth, protein 
maintenance, lipid deposition, and lipid mobilization, 
respectively

56; 1.63; 50; 39.6 [33, 38]

eIE; eIF Unitary energy costs (in MJ/unit) of immune responses IE 
and IF, respectively

estimated (population level)

Observed host traits
HE0 Baseline level ofHE[%] assumed to vary between individuals; estimated (individual level)

βHE Per loss rate of HE not due to infection 0.16 assumed

γAsh; γWater Fixed ratio Ash:P and Water:Pm, respectively 0.211; 3.25 [33, 38]

αWater Scaling factor of protein maturity determining the pro-
portion of body water

0.815 [33, 38]

aGut_Fill; bGut_Fill Coefficients to predict Gut_Fill from Feed_Energy 11; 0.467 [39]

aBFT ; bBFT ; cBFT Coefficients to predict BFT −4.01; 0.56; 1.52 [40]

DMCFeces Dry matter content of the feces 0.35 assumed

Diet characteristics
DMCFeed Dry matter content of the feed 0.88 known inputs

DMDFeed Dry matter digestibility of the feed 0.76

MECFeed Metabolizable energy content of the feed (MJ/kg of DM) 7.7
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development: IE limits the establishment of infective L3 
larvae ( kE ), and, IF limits the reproductive maturation of 
adult females ( kF)).

For modelling energy budget, we assumed that protein 
accretion ( P ) to reach mature size drives body growth 
and remains unaffected by the early stages of infec-
tion. Indeed, dietary protein supplementation is known 
to favor the development of immunity [42, 43] but this 
type of  effect only seems to occur once the nutritional 
requirements for growth are fulfilled [44]. Excess energy 
(not used for protein growth or maintenance) then fuels 
body lipid deposition ( L ) and leads to change in body 
reserves. Further, just as the synthesis and maintenance 
of a gram of protein or of lipid has an energy cost (e.g. 
egrowth or edep in Table 1), we considered that energy costs 
may also exist for both types of immune responses ( eIE 
or eIF in Table 1). However, in contrast to egrowth or edep 
whose values are relatively well-known from the lit-
erature (Table  1), the values of eIE or eIF are unknown 
(Fig. 2).

In order to assess if immune responses contribute sig-
nificantly to the energy budget and to estimate the cor-
responding energy costs ( eIE and eIF ), the model was fitted 
to experimental data and the goodness of fit was assessed 
both at the individual and at the population level. At the 
individual level, blood haematocrit and fecal egg count 
measures were used to indirectly estimate the magni-
tudes of the host immune responses IE and IF . Simulta-
neously, data on feed intake, body growth and reserves 
were used to estimate the components of the energy 

budget of each infected sheep, specifically their protein 
growth rate. Whilst the magnitude of the host immune 
response and energy budget vary both over time within 
an individual, and among individuals, the energy costs 
associated with the synthesis and maintenance of a gram 
of protein or of lipid egrowth or edep , and of eIE or eIF asso-
ciated with one unit measure of IE and IF , respectively, 
were assumed to be constant among individuals. Hence, 
we repeated individual parameter estimations using dif-
ferent fixed values of eIE and eIF and looked for the best 
average goodness of fit at the population level (Fig. 3). In 
particular, if the best fit was obtained without immune 
energy cost (i.e. using eIE = 0 and eIF = 0), this would sup-
port the hypothesis that body growth and host resistance 
are nutritionally independent. In contrast, positive esti-
mates of eIE or eIF would support the hypothesis that an 
energy allocation trade-off can occur between host resist-
ance and body reserves.

Parasites dynamics within‑host
The model describes the successive stages of para-
site development within the host, from third stage lar-
vae intake ( LI ) to fourth-stage larvae established in the 
abomasum ( LE ), and then from LE to adult fifth stage 
males ( Am ) or females ( Af  ). Within females, the transi-
tion between non-laying ( Af NL ) to laying females ( Af L ) 
is represented as this last transition towards the most 
pathogenic stage largely determines the severity of the 
infection.

Fig. 3  Workflow of the model parameter estimation. Grey box indicates the two steps of individual parameter estimation (1.1 and 1.2). Step (2) 
iterates the process 100 times to determine the optimal values of energy costs of immunity against Haemonchus contortus infection. See Table 1 
for parameter definition
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The infection dynamics from the day of inocula-
tion (t = 0 and LI equal to initial dose LI0 ) onwards is 
described by the following system of ordinary differential 
equations:

where kE = 0 if t ≤ τLI

where kA = 0 if t ≤ τLE

where kE , kA and kF are transition rates that determine 
parasites establishment, development and fecundity and 
µ  parameters are stage-specific mortality rates. Parasite 
sex is considered when parasites become adults, with 
pAm indicating the proportion of males. Among the dif-
ferent stages of the parasitic phase, larvae establishment, 
adult fecundity, and adult mortality are considered to 
be key targets of the host immune system [44]. Here we 
considered immune effects on parasite establishment and 
fecundity ( kE and kF ) during the first stages of infection 
that we studied experimentally, and assumed constant 
mortality rates ( µ) and rate of development from L4 to 
adults ( kA ). Establishment rate kE and female transition 
rate kF were considered at maximum values kE0 and kF0 
in the absence of any immune effect, and their values 
were reduced proportionally to the magnitude of specific 
immune responses IE and IF , respectively (further details 
in section ‘Host immune responses’). Moreover, there is a 
minimum time τLI required by ingested third-stage larvae 
( LI ) before reaching host abomasum and establishment, 
and then a minimum time τLE to transform into adult 
fifth stage ( Am or Af NL ). Thus, kE and kA were set to 0 
when t ≤ τLI and when t ≤ τLE , respectively.

Female worm fecundity is closely related to their 
body size which increases as they grow. To simplify we 
assumed that Af NL represents an average worm of con-
stant size and fecundity F0 (i.e. average laying rate) so that 
the inverse of kF corresponds to the average development 
time to reach that size and lay eggs. Thereby, immune 
influence on kF controls whole population fecundity, that 
is the total egg excretion: Af L ∙ F0.

(1)
dLI

dt
= −(µLI + kE) · LI

(2)
dLE

dt
= kE · LI − (µLE + kA) · LE

(3)
dAm

dt
= pAm · kA · LE − µAm · Am

(4)

dAf NL
dt

= (1− pAm) · kA · LE − (µAf NL
+ kF ) · Af NL

(5)
dAf L
dt

= kF · Af NL − µAf L
· Af L

In order to fit the model to the experimental data, the 
dynamics of fecal egg counts ( FEC ) and blood haema-
trocit level ( HE ) was also modelled. Specifically, FEC 
(eggs number excreted per day and per gram of feces) 
was defined in relation to the weight of feces produced 
daily by the host ( Feces ) as follows:

where Feces is determined by diet characteristics (cf. 
Table 1) and FI (in kg so multiplied by 1,000 to convert it 
into grams).

Time change in HE was defined by a constant replica-
tion rate αHE and a per capita loss βHE under non-chal-
lenging conditions. For better ease of parameterization, 
we defined HE0 as the equilibrium level of HE that 
equals βHE/αHE in the absence of infection. Under infec-
tious challenge, HE dynamics is also affected by parasitic 
consumption. Blood haematocrit ( HE ) was negatively 
affected by the total number of parasites. This loss was 
assumed to depend on the parasitic loads associated with 
the different established parasitic stages ( LE , Am , Af NL 
and Af L ) and on the corresponding stage-specific effects 
ω:

Our model accounts for the fact that HE and FEC 
dynamics may reflect different biological processes that 
can be differently controlled by host immunity (e.g. HE 
can decrease due to some worm burden but this does 
not necessarily implies a correlated increase in FEC if 
for instance the host develops a strong anti-fecundity 
response). Nevertheless, HE and FEC may still be moder-
ately to strongly negatively correlated in accordance with 
the literature [45].

Host immune responses
Effects of the host immune responses IE and IF on kE 
and kF , respectively, were assumed to follow a sigmoi-
dal pattern [41, 46], so that at low levels of immunity the 
responses are relatively inefficient (e.g. in naïve animals) 
whereas they saturate at high levels, for instance due to 
time constraints on immune cells to neutralize parasites. 
In model terms, the maximum ( kE0 and kF0 ), the inflec-
tion point ( IE0.5 and IF0.5 ) and the shape ( αkE and αkF ) 
were determining sigmoidal patterns as follows:

(6)FEC =
AFL · F0

Feces

(7)Feces =
FI · DMCFeed · (1− DMDFeed)

DMCFeces
· 1000

(8)

dHE

dt
= βHE · (HE0 −HE)− (ωLE · LE + ωAm · Am+ ωAf NL

· Af NL + ωAf L
· Af L)



Page 8 of 18Douhard et al. BMC Ecology and Evolution           (2025) 25:14 

and

The development of immune response against para-
site establishment IE was assumed to be triggered by 
the intake of L3 larvae ( LI  ). As for the immune effect 
on parasite we assumed that the increase in the repli-
cation rate of IE according to LI  followed a sigmoidal 
pattern:

The early immune response IE , in interaction with 
the number of L4 established larvae ( LE ) were then 
assumed to elicit the immune response IF  against the 
reproduction of adult parasites as follows:

Of note, an increase in ϕIE will lead to an increase 
in IE (Fig.  4A), as well as in IF  in case of positive ϕIF 
(Fig.  4C), respectively. Whereas ϕIF only affects IF 
(Fig.  4B) and has no effect on IE , ϕIE has a non-linear 
effect on IF  (Fig. 4C). For low values of ϕIE , IE increases 
faster than LE declines (i.e. the product IE − IE0 · LE 
increases) whereas for higher values of ϕIE , IE effec-
tively reduces LE which then subsequently reduces 
the immune response IF  (as a stimulation of a strong 

(9)
kE(IE) =

1
(

IE
IE0.5

)αkE
+ 1

· kE0

(10)
kF (IF ) =

1
(

IF
IF0.5

)αkF
+ 1

· kF0

(11)

dIE

dt
=



ϕIE ·
1

�
LI0.5
LI

�αIE
+ 1

· IE



− βIE ·
�
IE − IE0

�

(12)
dIF

dt
=

(
ϕIF ·

(
IE − IE0

)
· LE

)
− βIF ·

(
IF − IF0

)

IF  would be pointless). This non-linear effect is more 
pronounced for higher values of ϕIF (Fig. 4C).

Host energy budget
The host energy balance ( EB ) was defined as the energy 
intake minus the sum of the different energy requirements:

and then determined the rate of lipid ( L ) deposition or 
mobilization:

This model was based on a previous nutritional growth 
model [33], except that we added the component Eimmunity 
and sought to estimate its parameters based on our experi-
mental data. Specifically, Eimmunity was considered as a 
weighted sum of immune responses IE and IF:

where the weighing factors eIE and eIF represent the 
energy costs per unit of immune component IE and 
IF . Their values were assumed to be constant among 
individuals.

In the EB equation, Eintake was obtained using individual 
spline estimate of FI according to the time of infection and 
assuming constant feed characteristics:

The energy requirement for protein accretion ( Egrowth ) 
was driven by the temporal changes in carcass protein ( P ) 
and Wool:

(13)EB = Eintake − (Egrowth + Emaint + Eimmunity)

(14)
dL

dt
= {

edep · EB if EB ≥ 0

emob · EB otherwise

(15)Eimmunity = eIE · IE + eIF · IF

(16)Eintake = FI · DMCFeed ·MECFeed

(17)Egrowth = egrowth ·

(
dP

dt
+

dWool

dt

)

Fig. 4  Effect of replication rate on each immune response over the course of an infection. A effect of ϕIE on IE ; B effect of ϕIF on IF , and C indirect 
effect of ϕIE on IF depending on ϕIF with maximum IF values observed during infection on the y-axis
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where P followed a Gompertz growth, with a target 
amount of protein at maturity ( Pm ) and a growth rate 
parameter ( βP ) estimated individually:

Wool was assumed to growth proportionally to P and 
was depleted when sheep were shorn.

Finally, the ratio between P and scaled mature protein 
( PαPm

m  ) determined the change in energy requirements for 
animal maintenance during its development:

Based on previous state variables P and L and on esti-
mated FI , observed growth traits ( BW   and BFT  ) were 
defined as auxiliary variables with fixed parameters 
(specified in Table 1). Bodyweight was the sum of the dif-
ferent body components:

with

and

Back fat thickness was derived from a previous allo-
metric equation [39], as follows:

Parameter estimation
According to the model, observed differences in the 
above measurable performance and resistance traits are 
caused by individual differences in the genetic poten-
tials for growth (protein and lipid deposition) and 
wool production, as well as in the immune responses. 
These can be represented by the model parame-
ters  θ =

(
Pm, Lm,βP ,βWool ,ϕIE ,ϕIE , HE0

)
  (Table  1). To 

account for individual variation in these latent model 

(18)
dP

dt
= βP ·

(
P

P
αPm
m

)
· log

(
Pm

P

)

(19)
dWool

dt
= βWool · P

(20)Emaint = emaint ·

(
P

P
αPm
m

)

(21)
BW = P + L+Wool + Ash+Water + Gut_Fill

(22)Ash = γAsh · P

(23)Water = γWater · Pm ·

(
P

Pm

)αWater

(24)
Gut_Fill = FI ·

(
aGut_Fill − bGut_Fill ·MECFeed

)

(25)BFT = exp

(
log(L)− aBFT − bBFT · log(BW − Gut_Fill)

cBFT

)

parameters θ , these parameter values associated with 
each individual were estimated from the data, together 
with the constant population-specific energy costs ( eIE 
and eIF ) associated with one unit of IE and IF respectively, 
in two main steps (Fig. 3).

Estimates for the individual parameters θ = ( Pm , Lm , 
βP , βWool, ϕIE , ϕIF ,HE0) were obtained as follows: the indi-
vidual parameters related to growth ( Pm , Lm , βP , βWool ) 
were estimated using data out-of-infection to describe 
the growth potential of each individual (step 1.1 in Fig. 3). 
The other individual parameters related to immunity (ϕIE , 
ϕIF ) and the baseline level of HE ( HE0 ) were estimated 
using data during the infection period. For this last part, 
we assumed that values of growth parameters related to 
protein growth ( Pm , βWool ) were the same as out of infec-
tion, except the rate of protein synthesis βP that may be 
affected by infection and was thus re-estimated together 
with ϕIE and ϕIF (step 1.2 in Fig. 3). When estimating the 
four parameters during the infection stage, we assumed 
fixed constant values of the immune energy costs ( eIE and 
eIF ) and other population specific parameters listed in 
Table 1.

Individual parameter estimates were obtained by mini-
mizing differences between model predictions and data 
for that individual as outlined below. This procedure was 
then repeated for 100 different combinations of values 
for eIE and eIF , and the most likely values of eIE and eIF 
were then selected as those that minimise the differences 
between model predictions and data across all individu-
als (step 2 in Fig. 3).

Fitting criteria
Individual values for the parameters were estimated 
based on the minimization of a normalized residual 
sum of squares for each individual i ( NRSSi ) defined as 
follows:

where yk ,t,i and ŷk ,t,i are the observed and predicted val-
ues, respectively, of trait k for individual i at time t . Tk is 
the last time-measurement for trait k , K  is the number 
of measured traits and SD(yk ,i) is the standard deviation 
of trait k for individual i that is used to normalize each 
RSSk ,i . Note that each time-specific measurement of trait 
k is given the same weight when calculating the whole 
NRSSi . When SD(yk ,i) = 0 (as it can be the case for FEC 
(log-transformed)) it was replaced by 1.

The predicted values ŷk ,t,i were obtained using the 
host-parasite model with a given set of parameters θ . We 
searched for the set of parameters θ∗ that minimize NRSSi 
using a modified version of the Levenberg–Marquardt 

(26)NRSSi =

K∑

k=1

(∑Tk
t=1

(
ŷk ,t,i − yk ,t,i

)2

SD(yk ,i)

)



Page 10 of 18Douhard et al. BMC Ecology and Evolution           (2025) 25:14 

algorithm. This was implemented in R using the nls.lm 
function of the R-package minpack.lm [47].

The exact approach associated with the different steps 
is outlined below.

Step 1.1) estimation of individuals’ growth parameters 
out‑of‑infection
In this step 1.1 (Fig.  3), observations for K  = 3 traits 
( BW , BFT  and Wool ) were used to determine the values 
of the four parameters   θ∗ = (Pm, Lm, βP , βWool)  that 
minimize the corresponding NRSSi . A mentioned ear-
lier, a central model assumption was that growth was 
driven by protein accretion to reach a genetically deter-
mined target value at maturity Pm . However this value 
could not be estimated reliably during the infection as 
the corresponding growth period was relatively short 
and feeding conditions were very favorable to fattening 
(i.e. concentrate ad  libitum) compared with the periods 
where animals were uninfected (forage and concentrate 
to meet animal requirements). In this first step we thus 
aimed to estimate Pm using growth data before and after 
the experimental period to capture the ‘normal’ growth 
pattern before reproduction (Fig.  5A). For this we used 
the empirical growth equation (Eq. (18)). In addition 
to Pm we also estimated the ‘normal’ protein growth 
rate parameter βP even though we considered that this 
parameter could vary during infection (cf. next sub-
section). Based on BFT  and Wool measurements it was 
possible to separate Pm from other BW  components at 
maturity (following Eqs. (21–25)). Data on BFT  (Fig. 5B) 
was informative of the level of lipid. However, as food 
intake was not recorded out of the infection lipid depo-
sition could not be calculated based on EB during those 
periods (as shown in Eq. (14)). Instead a ‘normal’ lipid 

growth was assumed to follow a sigmoid pattern as pro-
posed in [33]. This pattern is driven by dPdt  as follows:

where the estimated parameter Lm represents the level of 
L at maturity.

Based on fleece weight recorded after the experimen-
tal period (Fig. 5A), we could also estimate the individual 
wool growth parameter βWool of Eq. (19). Finally, in Eq. 
(21) all other BW  components than P , L and Wool were 
simply derived from P , assuming equal parameter values 
among individuals.

Step 1.2) estimation of individual parameters 
during infection for fixed values of immune energy costs
During the infection we first used the model of within-
host parasite dynamic to estimate the baseline level of 
HE ( HE0

 ). Values of  HE0  were thus logically assumed 
to be independent of the energy cost of infection. Then, 
the two coupled sub-models (i.e. the host-parasite sys-
tem and the host energy budget were used to estimate 
parameters ϕIE and ϕIF that set the magnitude of the two 
immune responses. For the energy budget sub-model, we 
used the values of Pm and βWool estimated out-of-infec-
tion (see previous sub-section) whereas we re-estimated 
βP ( βP*) considering that the protein growth rate (but 
not the target Pm ) could deviate from the normal value 
estimated out-of-infection. In this step 1.2 (Fig. 3), lipid 
deposition was calculated based on food intake (Eq. (14)) 
so the parameter Lm was no longer needed. All other 
parameters related to immune responses were assumed 
equal among-individuals, including eIE and eIF . Thus, for 
each individual i the values of the parameters ( ϕIE , ϕIF 

(27)
dL

dt
=

dP

dt
·
Lm

Pm
· d ·

(
P

Pm

)d−1

Fig. 5  Example of individual growth curve fitting to estimate protein weight at maturity based data observed out of infection. A data on body 
weight ( BW ) and B back fat thickness ( BFT  ) were used. Points and lines represent observed data and model predictions, respectively. Note the drop 
in body weight at shearing that was used to estimate wool growth. Data observed during the infection period (grey area) were not used for model 
fitting in this step. See S2 Fig for all 42 individuals (Animal n°20000188131 represented here)
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and βP∗ ), were determined that minimize the individual’s 
NRSSi comprising K  = 4 traits ( FEC ,HE,BW ,BFT ).

Step 2) estimating the immune energy costs eIE and eIF
Estimates of individuals’ immune parameters follow-
ing the procedure outlined in 3.3.1 were obtained for 
100 (10 × 10) different combinations of values of eIE and 
eIF (step 2; Fig. 3). These combinations comprised 10 dif-
ferent values of eIE and eIF , respectively (within the range 
[0; 0.09] and [0; 0.021]; for eIE and eIF respectively, with 
10 equal increments within each case). This grid was 
obtained by refining a first grid exploration on larger 
ranges to focus on values of NRSSi below 17 (which 
explains the different maximum values for eIE and  eIF ). 
For each combination, NRSS calculated during the infec-
tion (with K  = 4 traits) was averaged over all individuals 
from both lines. The most likely combination of eIE and 
eIF was then considered as the one that minimizes the 
average NRSS.

Results
Immune energy costs and trade‑off between host 
resistance and fat storage
Consistent with H1, the positive relationship that we 
observed among individuals between host resistance 
( FEC ) and storage ( BFT  ) (Fig. 6A) was better predicted 
assuming positive values of immune energy costs ( eIE and 
eIF ) than assuming zero immune energy costs (Fig. 6B). In 
other words, a higher dynamic immune response in R vs. 
S sheep contributed to the observed differences between 
lines both in terms of host resistance and in terms of fat 

reserves (Fig.  6). This difference in immune responses 
led to an energy allocation Eimmunity that was about three 
times larger on average in R vs. S sheep (Fig.  7), which 
effectively translated into a large difference in resistance 
to parasites (means of maximum predicted FEC  based 
on negative binomial regression = 49 and 1,223 eggs/g 
in R and S sheep, respectively). In contrast, since energy 
intake was the same under H0 and H1, then more energy 
was available for growth and body reserves when zero 

Fig. 6  Relationship among individuals from resistant (R) and susceptible (S) lines between host resistance and fat reserves observed (A) 
and predicted assuming zero (H0; B) or positive immune energy cost (H1; C). A Observed data (points) supports a trade-off between host 
resistance (approximated by maximum fecal egg count ( FEC )) and fat reserves (approximated by average back fat thickness ( BFT )). B Individual 
model predictions (squares) under hypothesis H0 do not lead to the observed trade-off, C contrary to predictions under H1. Solid line and grey 
areas represent linear regression lines with their prediction interval. Regression coefficients (β) are indicated with their level of significance. Note 
that the scale of x-axis is log-transformed to account for the skewed distribution of FEC

Fig. 7  Average energy allocation to immunity predicted 
during infection with Haemonchus contortus in individuals 
from resistant (R) and susceptible (S) lines. Energy allocation 
is expressed relatively to energy intake and absolutely as the amount 
allocated
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immune energy costs were assumed (H0). In this case, 
the model tended to overestimate BFT   in R sheep and 
the trade-off between BFT   gain and host resistance did 
not occur (Fig. 6B).

Evidence for positive immune energy costs
The optimal values of immune energy costs in support 
of H1 corresponded to the best average model fit across 
the 42 individuals. This optimum was obtained when 
both immunity against parasite establishment ( IE ) and 
against parasite fecundity ( IF ) entailed small, yet positive 
energy costs (i.e. eIE = 0.01 and eIF = 0.0072; Fig. 8). Com-
pared with the scenario H0, positive values for eIE and eIF 
improved the goodness of fit on average (mean normal-
ized residual sum of square NRSS = 14.54 (H0) vs. 12.97 
(H1)) as well the prediction accuracy (SD NRSS = 7.04 
(H0) vs. 4.73 (H1)). However this improvement var-
ied between lines. In general, NRSS was not as low in R 

sheep as in S sheep mainly due to the zero-inflated dis-
tribution of FEC  in the R line that made this trait more 
difficult to predict, regardless the energy constraint (H0: 
NRSSR = 16.84 vs. NRSSS = 12.24; t(40) = 2.22, p = 0.032). 
However under H1 the better prediction of BFT in R 
sheep mainly contributed to a large NRSS  improvement 
in this line so that the difference in goodness of fit was 
much reduced between lines (H1: NRSSR = 14.32 vs. 
NRSSS = 11.61; t(40) = 1.91, p = 0.06).

Results of individual model fitting show that the four 
different trait dynamics are relatively well predicted at 
the individual level, as illustrated by two representative 
individuals of each line (Fig.  9; R sheep NRSS = 15.8; S 
sheep: NRSS = 14.6). Observed responses and model fits 
for all 42 animals are provided in S3 Fig and individual 
model errors in S4 Fig. As would be expected, the model 
captured the overall trends but not all nuances observed 
in the experimental data. For instance, small FEC values 

Fig. 8  Model goodness of fit according to the assumed values for the energy cost of two immune responses against Haemonchus contortus. 
Parameters eIE and eIF refer to the energy cost of immunes responses against larvae establishment ( IE ) and fecundity ( IF ), respectively. The fitting 
criteria used for parameter estimation was the normalized residual sum of squares for each individual i ( NRSSi ). The average NRSS over the 42 
individuals is represented. The global optimum is indicated with an asterisk

Fig. 9  Individual model fit for two representative sheep of lines selected for resistance (R) or susceptibility (S) to Haemonchus contortus. Individual 
model observations (points) and model predictions under H1 (solid lines). FEC = parasite fecal egg count; HE = blood haematocrit; BFT  = backfat 
thickness; BW = body weight. Note that in (A) the scale of y-axis is log-transformed to account for the skewed distribution of FEC
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of individuals with zero FEC during most of the infection 
time were not well predicted (Fig. 9A).

Evidence for differences in immunity between lines
The immune energy cost assumption differently affected 
the estimates for the three host parameters related to 
immunity ( ϕIE and ϕIF ) and to protein growth ( β

∗
P ) during 

infection. In line with expectation iv, higher replication 
rates ϕIE and ϕIF led to stronger immune responses IE and 
IF , in the R vs S line, independent of whether energy costs 
apply or not (Table 2). In contrast, the average estimates 
of β

∗
P decreased in both lines under H1, with relatively 

stronger reductions in the R line. Baseline values HE0 
were not different between lines (R = 34.8 vs. S = 35.4; 
t(40) = −0.75, p = 0.43). Contrary to H0, under H1 energy 
can be allocated to immunity at the expense of body 
growth and reserves. This energy reallocation was sup-
ported, mainly in R sheep, so that similar estimates for 
β∗
P were obtained between lines when costly resistance 

was assumed during infection (Table  2). Accordingly, 
the observed data did not support any difference in BW 
between infected lines (Fig. 1Aiii).

No differences in growth and energy storage between lines 
out‑of‑infection
Prior to the parameter estimation during the infection, 
growth trajectories including four individual param-
eters were fitted to BW  , BFT   and Wool  data observed 
out-of-infection (Table  3). Protein weight at maturity 
( Pm ) and wool growth rate ( βWool ) were assumed to be 
unaffected by infection and were thus used in the previ-
ous fitting results whereas protein growth rate ( βP ) was 
re-estimated during infection (Table 2) and lipid weight 
at maturity ( Lm ) was not re-used (as body lipid and its 
proxy ( BFT  ) were predicted from the model of energy 
budget during infection).

We did not detect any difference between the two selec-
tion lines among the four growth parameters estimated 
out of infection (Table 3). This confirmed our expectation 

(v) that sheep from the two selection lines diverged in 
their immune parameter values ( ϕIE , ϕIF ) , but not in their 
growth or wool production parameters as host selec-
tion was on resistance only. In addition, the values of 
βP were close to the interspecific estimate (in sheep and 
cattle; 0.02335 kg0.27/day) found by [33]). Those values 
of βP were higher than those estimated during the infec-
tion period ( β∗

P around 0.014–0.018; Table  2). However 
we found that βP and β∗

P were uncorrelated (see S1 Fig 
representing correlation between all parameters), thus 
suggesting that infection-induced immunity may medi-
ate growth. In particular, βP tended to correlate nega-
tively with immune parameters ϕIE (r = −0.38, t(40) = −0.3, 
p = 0.01) and ϕIF (r = −0.29, t(40) = −0.191, p = 0.06), in 
support of stronger immune responses deployed by slow-
growing lambs compared with fast-growing ones.

Discussion
Host resistance to helminth infections typically relies 
on an adaptive T helper 2 (Th2) cell response, which 
involves a myriad of energy-demanding processes [48, 
49]. Upon activation, immune response may then con-
tribute to elevate host metabolism. Yet, quantifying the 
energy allocated to immunity remains a long-standing 
challenge to link the physiological costs of host defenses 
to their evolution [6, 26], and thereby to develop an 

Table 2  Impact of assumption on immune energy costs on mean values of immunity and growth parameters estimated during 
infection in sheep from lines selected on resistance (R) or susceptibility (S) to Haemonchus contortus 

a ϕIE = replication rate of immunity against parasite establishment; ϕIF = replication rate of immunity against parasite fecundity; β∗
P

 = Protein growth rate estimated 
during the infection
b  Lines differences were tested based on unpaired t-test

Parametera H0: zero immune energy costs H1: positive energy costs

Line R
(n =21)

Line S
(n = 21)

t(df=40)
b p Line R

(n = 21)
Line S
(n = 21)

t(df=40)
b p

ϕIE 1.336 0.950 2.44 0.019 1.184 0.967 3.95 < 0.001

ϕIF −5.291 −7.369 4.56 < 0.001 −5.114 −7.294 4.74 < 0.001

β∗
P

0.0185 0.0154 1.4 0.17 0.0141 0.0143 −0.104 0.92

Table 3  Mean (with standard deviation) of growth parameters 
estimated out of infection in sheep from lines selected on 
resistance (R) or susceptibility (S) to Haemonchus contortus 

a Pm = protein weight at maturity; Lm = lipid weight at maturity; βP = Protein 
growth rate estimated out-of-infection; βWool = Wool growth rate
b  Lines differences were tested based on unpaired t-test

Parameter a Line R (n = 21) Line S (n = 21) t (df=40) 
b p

Pm 6.88 (0.364) 6.75 (0.433) 1.027 0.31

Lm 15.08 (2.033) 15.55 (2.602) −0.641 0.53

βP 0.0224 (0.0025) 0.0239 (0.0037) −1.551 0.13

βWool 11·10–5 (3.5·10–5) 12.10–5 (2.7·10–5) −0.518 0.61
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evolutionary perspective on immunometabolism [2]. 
In most host-parasite systems, limited knowledge of 
immuno-metabolism mechanisms conferring host resist-
ance proscribes any attempt to deduce specific immune 
energy costs using an analytical approach. Conversely, 
costs can be inferred at the level of the whole organism 
if the overall energy budget and changes in energy real-
location between immunity and other processes can 
be depicted over the course of infection [25]. By fitting 
dynamic mechanistic models of energy allocation to 
existing data, we estimated an induced energy cost of 
resistance in divergent host genotypes (Q1), and thereby 
lay the groundwork for establishing a link between host 
energy allocation and the emergence of among-individ-
ual trade-offs (Q2). Below we discuss the features of the 
energy cost of resistance that we found, the way it was 
inferred and its links with a trade-off among individuals 
of selected lines in our model system.

In agreement with previous estimates for immune costs 
mostly ranging from 5 to 15% of metabolic rate in vari-
ous host–pathogen systems [26], the induced immune 
energy cost found in this study was low to moderate in 
magnitude. Still, helminth parasite infections incur sub-
stantial costs on mammals’ metabolism [50, 51]. Meta-
analyses in sheep have quantified large impacts on lamb 
body weight ([52]) or metabolizable energy requirements 
([53]). However, those large effects mainly occur during 
the prolonged acute phase of infection [54], directly as 
a result of highly pathogenic nematodes such as H. con-
tortus. This latter phase was abbreviated in our experi-
ment by drenching at five weeks of infection, which 
may explain the lack of difference in final body weight 
between lines. As our infectious challenge was originally 
designed to evaluate future breeding animals [55], it was 
short enough to minimize the direct infection costs that 
could impair hosts’ reproductive potential. Our results 
thus coincide with previous evidence of relatively low 
resistance costs, mostly paid over a few days during the 
prepatent phase [56]. Accordingly, sheep resistance to 
helminth infections has been viewed as a short-term 
diversion of host resources providing a long-term advan-
tage on the avoidance of parasitological consequences 
[54].

So far, there have been few attempts to measure the 
energy cost of host resistance from real data. In gen-
eral, attempts based on the sole measurement of resting 
metabolic rate have been considered too simplistic to 
capture the specific contribution of immune processes 
in the whole energy budget [23]. In livestock, several 
studies have relied on feed efficiency estimations [54, 
57]. Those are usually based on multiple linear regres-
sion of host feed intake against host traits associated to 

main energy sinks (e.g. body weight gain), as well parasite 
burden ( FEC ). A lower energy efficiency of production 
in infected animals would support an overall infection 
cost. The immune contribution to this cost can then be 
estimated by comparing feed efficiency between resist-
ant animals and others. For instance, sheep selected for 
resistance to helminths required about 4% more energy 
per day relative to control animals during an infectious 
challenge with two helminths (Trichostrongylus colu-
briformis and Ostertagia circumcincta) [57]. However, 
estimates based on linear regression techniques applied 
to feed efficiency may provide poor estimates of the true 
resistance costs given their ignorance of host-parasite 
interactions over time. In particular, nutritional effects 
on host resistance taking place early in the infection can 
be difficult to assess since most infection traits used as 
covariate only vary after the prepatent period (e.g. FEC , 
HE ). Moreover, transient changes in nutrients use make 
the requirement of host resistance particularly challeng-
ing to detect insofar as effects on animal performances 
may be subtle or compensated for by the end of the infec-
tion period [56, 57]. In our case, although resistant ani-
mals were found to allocate up to 15% of their ME intake 
towards immune response against H. contortus at two 
weeks of infection, this energy allocation was halved 
three weeks later, when the peak of parasite egg excretion 
is usually observed for this parasite species. The model-
ling approach proposed here thus accounts for important 
methodological difficulties to link animal feed intake to 
dynamic host-parasite interaction. Although many mech-
anistic models of host-parasite interaction have been pre-
viously developed, most of them ignored the cost of host 
resistance (e.g. in bioenergetics models in ecology [58]) 
or at best assumed it but never estimated it based on 
observed data (e.g. in livestock models of helminth infec-
tions [39, 59–61]).

Besides the limitations due to the single dataset we 
used to calibrate our model, some model assumptions are 
important to point out to help interpreting the signifi-
cance of the estimated host resistance costs. In particular, 
we assumed that host energy balance was fully buffered 
by body lipid reserves (Eq.  14). This may not necessar-
ily occur as animals may also defend a certain level of 
body fatness and therefore adjust their energy allocation 
between protein growth and immunity accordingly [3]. 
As previously assumed [44], protein growth and immu-
nity were given higher nutritional priority over changes 
in body lipid in our model. Yet more complex allocation 
rules could be considered [62], which may notably lead 
to different trade-off expressions according to the diet 
energy density.
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While dietary nutrient availability is usually considered 
as the main limiting factor to explain the occurrence of 
resource allocation trade-off during parasite infections, 
trade-offs can also occur in nutrient-rich environments 
as a result of parasite-induced anorexia [63]. Anorexia 
may be a pathological consequence of parasitism, or on 
the contrary, an adaptive host response to cope with 
the infection [11]. Our model did not incorporate any 
assumption in this respect; instead individual feed intake 
data automatically recorded was used as an independ-
ent model input. Thus, when considering the different 
patterns of feed intake between lines (Fig. 1Av) without 
assuming an energy cost of host resistance in the model 
(H0), the simulated difference in BFT  between the lines 
was still maintained, albeit only at 50% compared with 
the scenario of costly resistance (H1). This thus supports 
the view that reduced feed intake together with energy 
reallocation are major contributors of reduced perfor-
mance in parasitized sheep [64]. Therefore the coordi-
nated changes in those two aspects may well be part of an 
effective host response to infection [11].

The incorporation of acquired immunity during the 
course of infection remains an important challenge for 
the development of mathematical models of host-para-
site interaction in vertebrates [65]. In general, acquired 
immunity cannot be modelled explicitly, except for a 
few host-parasite systems where biomarkers of parasite-
specific immunity associated with host resistance have 
been recognized (e.g. immunoglobulins E and A against 
Teladorsagia circumcincta [66]). Instead, host-parasite 
interaction models of helminth infections have often 
considered parasite specific immunity as a single latent, 
unobserved variable that is acquired proportionally 
to the cumulated exposure (intake) of infective larvae. 
Based on the same notion of virtual immune response, 
our model differs from previous approaches in two 
aspects: first, it focuses on the acquisition of immunity 
during the development of a single cohort of parasites 
(i.e. single-dose infection) rather than across successive 
infections; second it represents several immune variables 
affecting a particular aspect of the parasite development 
rather than a single immune variable affecting all aspects. 
This approach remains incomplete as for example, two 
of the three main host effects on the parasite dynam-
ics [36] were included in our model (i.e. establishment, 
fecundity) whereas the effects on adult parasites mortal-
ity occurring mainly during late infection could not be 
explored with our short-term challenge. Including a host 
effect on parasite mortality in the model would require 
a third immune variable (“IM ”) with additional param-
eters to be estimated. This perspective further extends 
the view presented here that multiple strategies of host 

resistance with varying degree of energy efficiency could 
be expressed as a result of multiple immune responses 
with their specific energy costs. Consequently, represent-
ing the acquisition of each immune response across suc-
cessive infections would not only be relevant to represent 
situations of repeated infections closer to natural infec-
tions, but also to explore the long-term consequences of 
various strategies of host resistance in terms of energy 
efficiency.

Currently, the links between evolutionary (genetic) 
trade-offs and the demands and physiological control of 
energy for immunity and other functions during a host’s 
lifetime are still largely unknown [20, 67, 68]. According 
to the allocation hypothesis, the energy cost of immu-
nity should be large enough to impair host fitness, and 
consequently limit selection for host resistance to path-
ogens [7, 69–71]. Based on our findings, there are only 
a few reasons to expect energy allocation constraints to 
directly shape the outcomes of selection for sheep resist-
ance, as usually assumed [3, 4]. If large resistance costs 
actually exist this would mean that some important cost 
components were left unaccounted for in our approach 
(e.g. long-lasting effects of immunopathology). The rela-
tively small and transient energy cost of resistance that 
we found could otherwise possibly lead to significant 
impacts on fitness if animals were evolving in conditions 
that strongly constrict their energy budgets (e.g. expo-
sure to feed shortage, supplementary energy-demanding 
activities). Still, our observation an energetic trade-off in 
ad  libitum feeding conditions suggests that causes other 
than energy scarcity can lead to trade-offs in the evolu-
tion of host defenses.

Among other potential causes of trade-offs, obligate 
genetic antagonisms (e.g. due to pleiotropy [72]) can 
occur between host defenses and growth. Such trade-
offs are usually considered as constitutive and should 
thus result in different growth between lines regardless 
of infection [67]. For instance, a relationship between 
growth and host resistance may exist if immunity to 
helminths develops at a certain degree of maturity rela-
tive to adult body weight [73].  In our study,  we found 
similar growth parameters among lines out of infection 
(Table  3), although this finding is based on a critical 
assumption that infection did not affect growth patterns 
post-infection. Assessing the growth patterns of our lines 
in the absence of any infection is thus needed to con-
firm our results. However, we found that relative growth 
rate was negatively related to the strength of immune 
responses in both resistant and susceptible sheep. Like-
wise, intense livestock selection for fast growth com-
monly leads to increased diseases susceptibility [3] 
whereas the reciprocal consequences of selection for 
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resistance on growth are more ambiguous [68]. Such 
outcomes likely illustrate complex interferences between 
growth, development and the immune system [69]. In 
particular, pleiotropy in energy metabolism and immune 
signaling pathways is increasingly seen as a key mecha-
nism promoting the evolution of immune costs induced 
by infection [70].

Irrespective of their proximate causation, the exist-
ence of transient costs of host defenses should be a 
condition sine qua non for the evolution of induced 
immunity. If immunity conferring host resistance was 
cost-free it could be constantly deployed and induction 
would be pointless [71]. On the other hand, if moder-
ate energy costs of host resistance (as found here) were 
constantly paid, cumulated costs would likely be too 
large to be sustained over lifetime. Despite this ration-
ale, few studies have actually shown genetic variation 
in induced costs [74, 75]. Preliminary evidence that 
we showed in this study relates to induced energy cost 
of host resistance between selected lines. Still a note 
of caution is due here concerning the genetic nature 
of the trade-off that we observed among our selected 
lines. Indeed, other processes than a trade-off may 
have led to a difference in fat storage between lines (e.g. 
founder effects and/or genetic drift). More robust evi-
dence would require to replicate our selection experi-
ment although this is particularly long and costly in 
a large vertebrate host [76]. If sample size was suffi-
ciently large to reliably estimate variance components, 
genetic variation could also be further explored using 
the inference approach presented in this study within 
line or combined with a quantitative genetic design at 
a population scale. In populations evolving resistance, 
induced immunity may be a first step for the evolution 
of a constitutive immunity, that is a genetically hard-
wired trait constitutively expressed even under non-
infectious conditions [77, 78]. Perhaps this evolution 
in hosts defenses also gears towards alternative physi-
ological regulatory networks of the immune system and 
other physiological systems, that are energetically more 
efficient [79, 80].

Conclusion
In summary, this study inferred a small and transient 
induced energy cost of resistance to parasites in selected 
lines of a vertebrate host. Our results thus highlight how 
selection on host resistance may lead to trade-offs due 
to energy reallocation during infection and despite low 
energetic constraints. This is a first step to bridge two 
long-standing issues in the evolution of host defenses, 
namely to quantify the energy costs of immunity and to 
assess genetic trade-off between host defenses and other 
fitness components. Integrating those issues is key to 

address the link between immune energy costs and evolu-
tionary trade-offs that is abstractly pictured in the energy 
allocation hypothesis [78]. Building on our approach, 
combining mathematical models of host-parasite interac-
tions and experiments offers new perspectives to scale up 
the consequences of within-host dynamics (as envisioned 
in insects systems [81]), particularly to explain and pre-
dict the role of energy allocation trade-offs in the evolu-
tion of host defenses.
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the drop in body weight at shearing that was used to estimate wool 
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lines selected for resistance (n = 21) or susceptibility (n = 21) to Haemon-
chus contortus assuming immune energy costs or not in the model. Points 
represent observed data, solid lines are model predictions for the opti-
mum energy costs assumed under H1 (i.e. eIE = 0.01 and eIF  = 0.0072), 
dashed lines are model predictions under H0 when no energy costs for 
host resistance are assumed (i.e. eIE = 0 and eIF  = 0). FEC = parasite 
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Supplementary Material 4. S4 Fig. Distribution of within-individual model 
errors for the 42 sheep of lines selected for resistance (R) or susceptibility 
(S) to Haemonchus contortus. Model errors are calculated as the difference 
between model predictions and observations. The two individuals plotted 
in Fig 9 in the main text are highlighted. (A) FEC = parasite fecal egg 
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