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Abstract 

Background  The unicellular ancestors of modern-day multicellular organisms were remarkably complex. They 
had an extensive set of regulatory and signalling genes, an intricate life cycle and could change their behaviour 
in response to environmental changes. At the transition to multicellularity, some of these behaviours were co-opted 
to organise the development of the nascent multicellular organism. Here, we focus on the transition to multicellularity 
before the evolution of stable cell differentiation, to reveal how the emergence of clusters affects the evolution of cell 
behaviour.

Results  We construct a computational model of a population of cells that can evolve the regulation of their behav-
ioural state - either division or migration - and study both a unicellular and a multicellular context. Cells compete 
for reproduction and for resources to survive in a seasonally changing environment. We find that the evolution 
of multicellularity strongly determines the co-evolution of cell behaviour, by altering the competition dynamics 
between cells. When adhesion cannot evolve, cells compete for survival by rapidly migrating towards resources 
before dividing. When adhesion evolves, emergent collective migration alleviates the pressure on individual cells 
to reach resources. This allows individual cells to maximise their own replication. Migrating adhesive clusters display 
striking patterns of spatio-temporal cell state changes that visually resemble animal development.

Conclusions  Our model demonstrates how emergent selection pressures at the onset of multicellularity can drive 
the evolution of cellular behaviour to give rise to developmental patterns.

Keywords  Evolution of multicellularity, Evolution of regulation, Computational modelling

Background
The evolution of multicellularity is a major transition in 
individuality, which occurred multiple times across the 
tree of life [1–3]. These transitions were likely driven by 
an initial increase in cell-cell adhesion [4] - as also shown 

by in vitro evolution experiments [5, 6], leading to cluster 
formation by aggregation or by inhibition of cell separa-
tion [3, 7–9]. The unicellular ancestors of these nascent 
multicellular organisms exhibited complex behaviour 
and were capable of switching to different phenotypes 
in response to changes in the environment [10]: a form 
of reversible differentiation. When adhesion evolved, the 
newly multicellular aggregates consisted of complex cells 
that could exploit their pre-existing ability to differentiate 
in this new biotic context. Eventually the genetic toolkit 
organising differentiation gave rise to the developmental 
program of complex multicellular organisms, with stable 
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cell differentiation organised through spatio-temporal 
pattern formation [3, 11, 12].

Computational models have shown that an increase 
in cell adhesion at the onset of multicellularity greatly 
impacts the evolutionary dynamics of cells because of the 
emergent properties of the cluster. This can be an abil-
ity to sense the environment [13, 14], or the emergence 
of a life cycle, alternating between aggregation and uni-
cellularity [15] which can be driven by environmental 
fluctuations [16]. Once adhesion has resulted in cluster 
formation, the spatial structure of the newly-formed clus-
ter affects the survival of the cells within it, and can pro-
mote cell specialisation through structured interactions 
[17, 18]. Conversely, cell specialisation can promote clus-
ter formation to resolve metabolic or fitness trade-offs 
[19–21] and can aid the formation of stably differenti-
ated patterning in the multicellular tissue [23, 24]. Taken 
together, computational models show that the transition 
from a unicellular to a multicellular life cycle was shaped 
both by spatial structuring arising from cell adhesion and 
by the regulation of cell behaviour.

During the development of extant multicellular groups, 
the precise positioning of different cell types is achieved 
through the interplay between spatial structure and cell 
behaviour. This interplay can be found in various mul-
ticellular lineages, ranging from prokaryotic biofilms 
to animals and plants, and may have profound conse-
quences for the evolution and organisation of multicel-
lularity. In simple computational models without gene 
expression regulation, this interplay resulted in the evo-
lution of proto-developmental dynamics in response to 
graded toxic environments [25], and in genome structur-
ing to organise cell differentiation in colonies compet-
ing for resources[26]. We construct a spatially extended 
computational model to investigate how the evolution of 
adhering cell clusters impacts the evolution of cell behav-
iour regulation during the first steps of the transition to 
multicellularity - from the ecology of unicellular popula-
tions to that of nascent multicellular organisms.

In the model, a population of spatially embedded cells 
has to find resources to survive. Cells have evolvable 
adhesion proteins, allowing for a spectrum of adhesion 
strength, and an evolvable regulatory network which 
determines their behaviour in response to a seasonally 
changing environment. Through their regulatory net-
work, cells decide when to divide, and when to migrate 
towards the resources, allowing for various survival strat-
egies that are characterised by one or multiple pheno-
typic switches between these two states.

We find that the evolved strategy depends on whether 
adhesion can co-evolve, especially when the environment 
imposes a high selection pressure. When adhesion can-
not evolve, competition between cells is dominated by 

reaching the resources first – they have to navigate the 
abiotic environment to find the resources by themselves. 
When adhesion can evolve, cells can perform collective 
migration. This lowers the pressure to reach resources 
quickly, because cells carry each other to the peak of the 
gradient [14]. Cells then compete to divide earlier and 
more often, maximising their own reproductive success 
within the multicellular group. This shows that selection 
on cell behaviour becomes dominated by the newly estab-
lished biotic environment. Thus, even within the simple 
context of our model, we observe a complex evolution-
ary transient that involves intricate feedback between 
group-level properties (collective migration), and indi-
vidual-level competition for survival and reproduction. 
We call the evolved group dynamics “selfish multicellu-
larity” to emphasize that the regulatory strategies, as well 
as multicellularity [14], evolve in the model because they 
benefit individual cells. We observe that the interactions 
between cells within clusters, and between cells and the 
environment, lead to an emergent coordination of migra-
tion and division which are reminiscent of developmental 
processes.

Results
Model setup
We construct a model of a eukaryotic organism which 
can evolve its life cycle to adapt to a periodically fluctu-
ating environment. We draw inspiration from a recent 
reconstruction of the unicellular ancestor of animals [10], 
however our simple model set-up overlaps considerably 
with the life cycle of facultative and obligatory multicel-
lular eukaryotes like volvocines, choanoflagellates and 
dictyostelid slime moulds, which exploit various forms 
of collective behaviour to find resources [27, 28]. We 
assume that adhesion between cells can evolve through a 
ligand and receptor system [14], and that cells migrate to 
resources for survival via chemotaxis.

We implement a 2D hybrid Cellular Potts Model (CPM) 
[29–31] for the cellular dynamics, using a square lattice 
for the cell population and a lattice of the same dimen-
sions for a chemoattractant signal (Fig.  1A). CPM has 
been extensively used to model many aspects of embry-
onic development [32–34], since it endows cells with 
an explicit size and shape, allowing for both subcellular 
resolution and deformation, as well as cell level proper-
ties such as adhesion and migration. We have previously 
shown that CPM is very suitable to modelling uni-cellu-
lar eco-evolutionary dynamics at the transition to multi-
cellularity [14].

In the current model, cells can adhere to each other 
based on the ligands and receptors that they express 
on their membrane (Fig.  1B). The greater the com-
plementarity between the ligands and receptors of 
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two cells that are in contact, the stronger their adhe-
sion. This is translated to the cell-cell and cell-medium 
adhesion energy in the CPM (respectively Jc,c and 

Jc,m , see Methods). The adhesion strength resulting 
from Jc,c and Jc,m is quantified by the surface tension 
γ = J (σ1, σmedium)−

J (σ1,σ2)
2  . Cells adhere to each other 

Fig. 1  Model description. A The environment in which cells have to survive contains a chemoattractant gradient (lines and colour indicate 
equal amounts of chemoattractant). B Cells can sense the chemoattractant in the lattice sites that correspond to their own location, and move 
preferentially in the direction of perceived higher concentration (the blue arrow). Adhesion between two cells is mediated by receptors 
and ligands (represented by a bitstring, see Methods). The receptor of one cell is matched to the ligand of the other cell and vice versa. The more 
complementary the receptors and ligands are, the lower the J values and the stronger the adhesion between the cells. Persistent migration 
is implemented by endowing each cell with a preferred direction of motion vp . Every τp MCS, this direction is updated with a cell’s actual direction 
of motion in that period. C Cells have a simple evolvable regulatory network to determine whether to migrate or divide at any given time (with 
max. 3 divisions per season). The network receives as input the number of divisions the cell has already done, and the concentration of the gradient. 
The activation threshold ( ρi ) of each node i and strength of interaction ( wj ) of node j on node i can evolve to have a different effect on the state 
Si of the node. D Probability for a cell to die at the end of a season, as a function of its distance to the peak dc (in lattice sites). dscale determines 
the distance at which the probability is half-maximal
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when γ > 0 (i.e. with lower contact energy), while they 
preferentially interact with the medium - and thus do 
not adhere - when γ < 0 ( γ = 0 corresponds to neu-
tral adhesion). In some simulations, the receptors and 
ligands can evolve, thereby changing the strength of 
adhesion between cells. In simulations where adhesion 
cannot evolve, we set Jc,c and Jc,m such that the surface 
tension γ between cells and the medium is negative, 
resulting in no adhesion.

Cells can be in one of two states: migratory or divid-
ing, which are mutually exclusive phenotypes in our 
model (due to conflicting use of the cytoskeleton). When 
the in silico cells are migratory, they perform a persistent 
random walk and chemotaxis towards higher local con-
centrations of the chemoattractant signal (Fig.  1B). The 
chemoattractant is deposited as a gradient with a peak 
on one side of the lattice; this gradient is steep enough 
that cells are able to migrate to the peak individually. 
The location of the peak changes to a random side of the 
lattice (up, down, left or right) at the start of each new 
season. Dividing cells are stationary and do not react to 
the chemoattractant. When cells have been in the “divid-
ing” state continuously for 10000 CPM update steps 
(Monte Carlo Steps, MCS – see Methods), they slowly 
start increasing their size over another 20000 MCS. Cells 
divide when they have grown to twice their original size.

We assume that cells have limited resources and that 
they do not acquire more over the course of a season, 
so that cells can divide a maximum of three times dur-
ing each season. Thus, a season can be seen as the “fam-
ine” part of a “feast-and-famine” cycle. The “feast” part 
instead is implicit: cells that survive the end of the sea-
son simply regain enough resources to divide again three 
times during the next season.

The state of a cell is determined by an evolvable gene 
regulatory network (GRN), modeled as a Boolean net-
work with a fixed architecture, loosely based on [35] 
(Fig.  1C). The network receives two inputs: the average 
local concentration of the chemoattractant at the cell’s 
location, and the number of times the cell has already 
divided. It has three regulatory genes that process the 
input and determine the state of the output gene. The 
state of the output gene in turn determines cell state: 
migratory or dividing (see Methods). When a cell has 
performed the maximum number of divisions in a sea-
son, it cannot divide anymore even when the state of its 
output gene dictates a dividing state. Instead, the cell is 
in a quiescent state in which it is neither dividing nor 
migrating. When a cell divides, the daughter cell inher-
its the receptors and ligands for adhesion and the GRN 
architecture; the state of all genes in the networks of 
both cells is reset to 0. In one of the daughter cells, muta-
tions can happen in the strength of the gene regulatory 

interactions in the GRN and in the activation threshold 
of each gene.

Each season lasts a fixed number of MCS, so that cells 
have a fixed amount of time to divide and migrate. Dif-
ferent simulations can have seasons of different lengths. 
Cells that are closer to the peak of the chemoattractant 
gradient at the end of the season have a higher probabil-
ity to survive into the next season than cells that are fur-
ther away (Fig. 1D). At the start of each new season, the 
division counter in each cell, and the states of the genes 
in their GRN, are reset to 0.

Short seasons and high death rates select for polarised 
regulatory strategies
We assessed the effect of season duration, seasonal death 
rate and evolution of adhesion on the evolution of cells’ 
regulatory strategy. We ran 15 simulations for each com-
bination of season duration (short, intermediate or long), 
seasonal death rate (low or high), and the possibility of 
evolving adhesion, as summarised in Table 1. Each simu-
lation was initialised with a starting population of cells 
possessing random GRNs, which could evolve over sub-
sequent seasons. For milder conditions (lower death rates 
and longer seasons), populations in all 15 simulations 
could evolve viable strategies, in which cells switch at 
least once between migration and dividing (Fig. 2A). This 
led to a large population capable of reaching the peak of 
the chemoattractant gradient before the end of the sea-
son. In the simulations with intermediate season dura-
tion, higher death rates caused some populations to go 
extinct because cells were unable to evolve such switch-
ing. Under the harshest conditions (high death rates and 
very short seasons), extinction occurred in 4 to 7 simula-
tion replicas (Table 1).

We found that a spectrum of strategies evolved in the 
different simulations, which could be distinguished by 
the timing of their divisions: early in the season, late, or 
somewhere in between. When cells divided very early 
in the season (a “division-early strategy”), they typically 
performed all three divisions first and then switched to 
the migratory state (Fig.  2A, top row; additional videos 
[Additional files 1, 2]). Different decision rules evolve to 
execute this strategy [Additional file 3A,B]. For instance, 
the network can evolve to count cell divisions and switch 
to a migratory state after the last division. In other divi-
sion-early strategies, cells switch from migration to the 
dividing state at specific chemoattractant concentrations. 
In “division-late strategies”, the chemoattractant concen-
tration was more often used as a cue, with cells starting 
out in a migrating state until they reached a particular 
concentration of the chemoattractant, performing a divi-
sion, and then migrating further before dividing again at 
a higher chemoattractant concentration (Fig. 2A, bottom 
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row; [Additional file 3C]; one season shown in additional 
videos [Additional files 4, 5]). Intermediate strategies 
involved cells migrating a shorter distance before per-
forming the first division. Populations with a division-late 
strategy remained smaller compared to division-early 
strategies, because fewer cells completed all three divi-
sions during the season [Additional file 6].

For mild conditions (longer seasons of 500000 MCS, 
lower death rates of dscale = 80 ) a broader range of strat-
egies evolved in the different simulations, regardless of 
the presence or absence of adhesion evolution (all divi-
sion times shown in [Additional file 7]). Simulations with 

Fig. 2  Short season duration and high death rate: either division-late or division-early evolve depending on whether adhesion co-evolves. A 
Snapshots of the population over the course of one season, in two simulations where different regulatory strategies evolved; one with and one 
without evolution of adhesion (season length 180000 MCS). Colours denote the state of the cell (dividing=blue, migrating=red/yellow; lighter 
colours indicate larger number of cell divisions). B Evolution of adhesion in 15 independent simulations with high death rate and short seasons. 
A greater median γ (calculated from the interfacial energy between cells and with the medium, see Methods) indicates stronger adhesion 
between cells. C The median timing of cell divisions of the last 10 seasons in simulations with short seasons and high death rate, either with or 
without evolution of adhesion. Lines between dots connect values belonging to the same simulations (see all results in [Additional file 7])

Table 1  Number of surviving populations (out of 15)

low: dscale = 80 ; high: dscale = 40

season length death rate No adhesion adhesion

500000 MCS low 15 15

high 15 14

250000 MCS low 15 15

high 12 12

180000 MCS low 13 14

high 8 11
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shorter seasons (250000 or 180000 MCS) and higher 
death rate dscale = 40 led to progressively more polar-
ised strategies. In simulations where adhesion could not 
evolve, we found more “division-late” solutions (Fig. 2B, 
left; [Additional file  7], while in simulations where the 
receptors and ligands for adhesion were allowed to 
evolve, we found more “division-early” solutions (Fig. 2B, 
right). In the latter simulations, the population also rap-
idly evolved adhesion and became multicellular (Fig. 2C), 
resulting in a single, large cluster of cells. Multicellularity 
evolves because adhering cell clusters migrate more effi-
ciently than individual cells, and can displace non-adher-
ing cells at the peak [14]. These results do not change 
when cells have a different maximum number of divisions 
per season [Additional file  8], representing a smaller or 
larger amount of resources. When the maximum num-
ber of divisions per season is very high however (seven 
or above), the entire grid can become filled with cells and 
no migration is required to reach the peak; then, cells 
switch to a “division-only” strategy under all conditions. 
The results are also independent of the precise shape of 
the function that determines the probability of dying at 
the end of the season [Additional file 9]. In short, these 
results suggest that the evolution of adhesion strongly 
affects the selection on regulatory strategy, particularly 
under high selection pressure.

Multicellularity selects for the opposite regulatory strategy 
from unicellular organisms
Under harsh conditions, cell populations that could 
evolve adhesion, concomitantly evolved the opposite 
regulatory strategy from populations that remained uni-
cellular. We hypothesise that, as adhesion evolves, cells in 
the nascent multicellular group experience a novel selec-
tion pressure stemming from the new biotic environ-
ment, that results in a division-early strategy. Similarly, 
a division-late strategy might evolve as a consequence of 
loss of adhesion, when cells revert to a unicellular state. 
To test this hypothesis, we assess the evolutionary stabil-
ity of the two regulatory strategies - division-early and 
division-late - under the opposite adhesion regime.

We selected 4 individuals from different high-death 
rate, short-season simulations that were evolved without 
adhesion and let them evolve their adhesion strength. 4 
individuals evolved with adhesion were used for simula-
tions without adhesion ( γ = −4 ). Each of these individu-
als was used to start a new population in 5 independent 
simulations.

All 20 populations that could evolve adhesion, rapidly 
did so [Additional file  10]. Concomitantly, they evolved 
a division-early strategy, especially for their first division 
(Fig. 3A,B, [Additional file 11A,B]). Two factors contrib-
uted to earlier divisions: collective migration and the 

evolved regulation. Collective cell migration speeds up 
the group’s chemotaxis compared to a single cell [14], 
allowing cells to reach the chemoattractant concentra-
tion at which they divide at an earlier time – particu-
larly when cells have a division-late strategy [Additional 
file  12]. Their gene regulation also evolved so that divi-
sions occurred at a lower concentration of the chemoat-
tractant gradient [Additional file 13A].

Instead, the individuals that were switched to simula-
tions without adhesion gave rise to populations which 
evolved towards a division-late strategy Fig. 3A’, B’, [Addi-
tional file 11A,B’]). The main cause for this was a change 
in regulation: cells evolved to divide at a higher chem-
oattractant concentration [Additional file  13B]. We also 
observed that non adhering cells with a division-late 
strategy physically hindered each other while moving 
towards the peak of the chemoattractant gradient, lead-
ing to a slight delay in reaching the signal to divide com-
pared to single cells [Additional file  12]. Although this 
effect was small, it contributed to the overall competition 
between cells in a division-late strategy.

In summary, the evolutionary simulations show a clear 
change in regulatory strategy in reaction to a change in 
adhesion (Fig.  3B-B’, [Additional file  11]). The experi-
ments with a switch from non-adhesion to evolution of 
adhesion mimic the transition of a population to multi-
cellularity. Populations transitioning from the unicellu-
lar to the multicellular state often shifted their division 
strategy faster (from division-late to division-early) 
than multicellular populations that had become unicel-
lular (compare [Additional file  11B] with [Additional 
file  11B’]). In the latter set, some simulations took over 
400 generations before shifting to a more division-late 
strategy. This suggests that, at least within the model con-
text, transitioning towards a multicellular cell behaviour 
strategy is evolutionarily easier than its reversal.

Adhesion drives selection for early divisions by lifting 
pressure to reach the peak
We next analyse the competition and cooperation 
dynamics during the transition to multicellularity in 
our model. We start from a division-late ancestor that is 
evolving cell adhesion (as in Fig.  3A), and consider two 
regulatory mutants: one that migrates for longer before 
dividing, and one that divides earlier. The first mutant 
could be considered more cooperative, because it fore-
goes replication to carry the group. The second then 
could be considered more selfish, because it gets carried 
by the group while prioritising its own replication. We 
consistently observe that the second strategy takes over, 
suggesting that it evolves due to competition within the 
cluster.
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We set up competition experiments to investigate how 
population dynamics cause a selective advantage for 
division-late strategies in unicellular populations, and 
for division-early strategies in multicellular groups. We 
placed two groups of cells with different strategies and/or 
different adhesion strengths next to each other at the end 
of the lattice opposite the peak of the gradient (Fig. 4A). 
Cells were allowed to migrate and divide, but no muta-
tions could happen upon division, so that all cells in a 

group kept the same strategy. Cell death occurred at the 
end of each season as in the evolutionary simulations, 
and simulations were run until one of the groups went 
extinct.

Adhering groups always won against non-adhering 
groups with the same regulatory strategy (Fig.  4A). We 
observed that the main advantage to evolving adhesion 
came from adhering groups displacing non-adhering cells 
at the peak of the gradient. Collective chemotaxis was 

Fig. 3  When the adhesion capacity of a population is switched, regulation evolved to the opposite strategy. A-A’ Snapshots of a simulation 
from a simulation with a division-late (A) or a division-early (A’) ancestor that evolved towards the opposite strategy due to a switch in adhesion 
possibility (A: switch from simulation without adhesion to simulation with adhesion; A’ vice versa.) (seasons were chosen in which cells start 
on the opposite side of the peak). textbfB-B’ Median time of the first division for all cells in the cluster. in the last ten seasons of the simulations (B: 
switch from simulation without adhesion to simulation with evolution of adhesion; B’ vice versa.) The left circles in each graph indicate the division 
time of the ancestral strategy with which continued simulations were started. Four different ancestral strategies without adhesion were continued 
allowing for evolution of adhesion, and vice versa (5 independent simulations per ancestral strategy)
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beneficial but had a smaller effect (Fig.  4A and see vid-
eos [Additional files 14, 15]). Therefore, adhesion evolves 
because it increases interference competition.

Then we investigated why the opposite regulatory 
strategy evolves when the adhesion regime is inverted 
(from division-early towards division-late when switched 
from adhesion to no adhesion, and vice versa). We let a 
division-early and a division-late population compete 
without adhesion (we set γ = −4 ). In this case, the divi-
sion-late cells were closer to the peak throughout each 
season (Fig. 4B). The division-late strategy won because 
non-adhering cells exclude each other from the peak. The 
cells that reached the peak sooner were locked in place 
by the pressure exercised by the later-arriving migratory 
cells. (video in [Additional file 16]). However, in the first 
season there were significantly fewer division-late cells, 
indicating that this strategy sacrificed cell divisions to get 
to the peak sooner.

We then let a division-late group compete with divi-
sion-early group, assigning both groups a high adhesion 
value in the competition experiment ( γc,m = 6 ). The 
competition dynamics of these two groups were more 
complex. The division-late group reached the peak of the 
gradient earlier than the division-early group (Fig. 4C and 
D). While the latter reached the peak with a larger popu-
lation size, both groups had the same population size at 
the end of the season. Because adhesion was mediated 
by identical ligands and receptors, the two groups mixed 
freely. However, when we plotted the distance of both 
groups over multiple seasons, we found that the division-
late group did not remain close to the peak until the end 
of the season, despite arriving there earlier (Fig. 4E). The 
videos show that the division-late cells were displaced 
because many still performed divisions close to the peak, 
and were therefore in a non-migratory state (video in 
[Additional file 18]). This also resulted in smaller popula-
tion sizes in later seasons, as the larger mass of the divi-
sion-early cells kept the division-late cells from reaching 
high enough chemoattractant concentrations. Thus, as 

adhesion increases mixing between sub-populations at 
the peak, a division-early strategy is more competitive 
because it results in larger numbers of actively motile 
cells.

In summary, when cells cannot evolve adhesion, their 
evolution is driven by competition for reaching and occu-
pying the peak first. This leads to a division-late strategy, 
where cells combine the use of the abiotic environmental 
cues (the chemoattractant gradient) with the informa-
tion on their internal state. This strategy yields a sur-
vival benefit due to lower death rates, but at the cost of 
fewer divisions. When cells can (and do) evolve adhesion, 
they optimise the use of their biotic environment, i.e., 
the other cells. Adhesion allows cells to reduce interfer-
ence competition at the peak of the chemoattractant by 
increasing cell mixing, and exploit each other for migra-
tion while maximising their divisions. The evolution of 
multicellularity thus impacts the selection pressure expe-
rienced by the cells within the cluster.

Finally, the multicellular clusters often displayed pat-
terns of cell differentiation that resembled development, 
with morphogenetic events such as stretching and com-
pression of the multicellular cluster (reminiscent of con-
vergent extension [34, 36]). This is especially clear for the 
dynamics of a genetically homogeneous cluster (Fig.  5, 
video in [Additional file  19]). Cells within the cluster 
reach particular chemoattractant concentrations at dif-
ferent times, resulting in a spatial pattern where subsets 
of cells are in different cell states. Unlike in complex 
embryonic development however, the differentiation in 
our simulations remains temporary in nature, with cells 
continually switching between a migratory and dividing 
state as the cluster migrates to the peak of the chemoat-
tractant gradient.

Discussion
In this study, we show how the evolution of adhesion 
changes the competition dynamics between cells that 
are able to sense and react to their environment. In both 

(See figure on next page.)
Fig. 4  Competition experiments show that selective advantage of a regulatory strategy depends on presence of adhesion. Setup of competition 
experiment: two groups (with differing regulatory networks or adhesion values) are made up of 16 cells each, and are placed adjacent to each 
other. The simulation is then run for multiple seasons (without mutations), until one of the groups has gone extinct. In the snapshots, cells 
in one group are coloured green and in the other purple (lighter shade when dividing). A-D Snapshots show the first season of the competition 
simulation. Graph plots group size against median distance of cells to the peak for the first season ( 0%=maximum distance, 100%=at the peak). 
Light-to-dark colour gradient of the line indicates time in the season, grey lines connect equal time points between the two groups. Replicates 
can be found in [Additional file 17]. A Competition between adhering ( γ = 6 , green) and non-adhering ( γ = −4 , purple) cells, either both with 
a division-late strategy (left) or division-early strategy (right). B Competition between ancestral, division-early strategy (evolved with adhesion 
before the switch to non-adhering conditions; green in snapshots) and evolved, division-late strategy (purple in snapshots); both non-adhering. C 
Two seasons of the competition experiment between two adhering groups, one with an ancestral, division-late strategy (evolved without adhesion 
before the switch to a simulation in which adhesion could evolve; green in snapshots) and one with a strategy evolved after 500 seasons 
with adhesion (having become more division-early; purple in snapshots). D Group size vs. median distance from peak over the course of one 
season, for the competition experiment in C) E Time dynamics of the competition in C. Top plot shows group sizes, bottom plot shows distance 
to the peak. Shading indicates 25th and 75th percentile of population
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Fig. 4  (See legend on previous page.)
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the unicellular and the multicellular case, cells maximise 
their own replication or survival, but the evolved strat-
egy to do so depends on the abiotic and cellular context. 
In the model, cells evolve to regulate when to migrate 
towards resources and when to divide. Evolution pri-
oritises migration in the unicellular case (when adhe-
sion cannot evolve), because of competition to reach 
the resources necessary for survival. Adhesion facilitates 
collective migration and cell mixing, thereby lifting the 
selection pressure to reach the resources first. In this 
case, cells benefit from maximising their divisions while 
remaining in the migrating cluster, and from remaining 
as close to the peak as possible by maintaining a migra-
tory state once there. Thus, the abiotic environment 
determines competition in absence of adhesion, while the 
biotic environment – the other cells – determines com-
petition in the presence of adhesion. We therefore expect 
that at the transition to multicellularity, the regulatory 
program of unicellular organisms drastically changed its 
dynamics to suit the new (cellular) environment – poten-
tially yielding patterning that resembles proto-develop-
ment as a side effect of the process.

Current bioinformatic evidence from the holozoan rel-
atives of animals points to a unicellular ancestor that had 
a complex life cycle, possibly with a multicellular stage, 
and a significant regulatory toolkit [10]. In fact, many of 
the genes necessary for coordinating multicellular devel-
opment, including adhesion proteins, transcription fac-
tors and signalling genes, were already partially present 
in the unicellular ancestor and extant closely related uni-
cellular species [8, 9, 37–40]. Our results show that the 
ancestral toolkit could have undergone rapid evolution to 
yield new strategies for competition within a newly mul-
ticellular context. We find that the temporal behaviour 
of cells, which results from their individual decoding of 
the environment, can already yield transient spatial pat-
terning in the multicellular cluster. The pattern is further 

stabilized by the differential sorting between migrat-
ing and dividing cells. No large changes to the available 
genetic toolkit are required for such transient patterning, 
only refinements of the existing regulation.

Experiments selecting for sedimentation of yeast cells 
showed that two forms of multicellularity can evolve: 
a clonal strategy that generates small clusters through 
incomplete cytokinesis, and an aggregative one that 
generates large clusters through increased adhesion [6, 
41, 42]. Aggregative groups sediment faster, but can be 
invaded by selfish clonal groups that exploit the increased 
adhesion of the aggregate [43]. Our work shows an analo-
gous pattern, where cell clusters that prioritise migration 
are taken over by cell clusters that prioritise replica-
tion (Fig. 4). In the future, it would be interesting to test 
whether a clonal multicellular form with more complex 
development can evolve from an aggregative mode with 
such emergent properties.

In complex multicellular organisms, cell differentia-
tion is often organised by a chemical gradient in their 
(tissue) environment, which is either produced by the 
embryo itself or via maternal factors. In contrast, exter-
nal and internal cues combine to generate pattern forma-
tion in simpler multicellular organisms. For instance, in 
the multicellular alga Volvox carteri, dark-light transi-
tions govern the differentiation of cells into somatic and 
germline cells, depending on their size after embryogen-
esis [44]. Similarly, in the multicellular (slug) phase of the 
slime mould Dictyostelium discoideum’s life cycle, cells 
migrate up external gradients of heat and light, causing 
different cell types to sort into specific regions along the 
body of the slug [45, 46]. Environmental cues triggering 
multicellularity can also be biotic: bacterial molecules 
induce rosette formation or swarming in the choanoflag-
ellate Salpingoeca rosetta [47, 48], while some myxobac-
teria [49] and slime moulds migrate collectively to feed 
on bacteria [50].

Fig. 5  Development of genetically homogeneous cluster. Images of a developing cluster over one season. The season was started with 50 
genetically identical cells with a regulatory strategy taken from from a simulation evolved with adhesion (death rate = 80, season duration = 
180000). Images are centered on the cluster as it moves through the grid
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A previous computational model showed spatial struc-
turing of cells of different type in response to a graded 
environment [25], showing that this may be a general pat-
tern. Other models have highlighted the effect of motil-
ity on the evolution of adhesion in social [51, 52] and 
non-social groups [14]. Our current model suggests that 
a transition to multicellularity may initially be driven by 
collective migration and increased competition within 
the cell cluster. We have previously shown that cell adhe-
sion can evolve because it enables collective chemotaxis, 
which enhances the reproductive success of individual 
cells [14]. Experimental evolution with unicellular or 
transiently multicellular phototactic or chemotactic spe-
cies may provide a test of these predictions.

Cells in the simulations form a single large cluster when 
cell adhesion can evolve. Within this cluster, cells keep 
switching between states to maximise their own growth 
and survival, and this competition drives the evolution of 
their behaviour. We call this outcome “selfish multicellu-
larity”. We thus do not observe a complete temporal-to-
spatial shift, as has been hypothesized in [53]. Multilevel 
competition between multiple distinct multicellular clus-
ters may be required to select for stable differentiation, 
as division of labour between cells may result in more 
successful groups. The ensuing group-level competition 
may also may also reverse the evolutionary trend to self-
ishness, promoting more strongly cooperative strategies. 
In this respect, our work shows that the transition to 
multicellularity can be accompanied by increased com-
petition between cells. Cooperation in the multicellular 
group can be a later innovation, perhaps under the con-
trol of a germ-line. Future work may show how such con-
trol may result in stable cell differentiation, as has been 
hypothesized before [54]. Furthermore, we show how 
external chemical gradients may have provided the cues 
for spatial pattern formation (as others have speculated 
[55]). The evolution of stable patterning (directed by an 
evolved internal gradient) may require a more evolvable 
genetic toolkit than currently implemented, which should 
expand to facilitate more complex regulation of cell-state, 
adhesion and cell-cell signalling. Future work may then 
be able to assess how the genetic toolkit used by the uni-
cellular ancestor to regulate cell behaviour, formed the 
basis for stable cell differentiation and division of labour 
in multicellular clusters[3, 11, 12].

Conclusions
In our previous study [14], we found that adhesion can 
evolve in response to an emergent selection pressure 
for collective migration in a noisy environment. Here, 
we find that such evolution of adhesion strongly deter-
mines the competition dynamics between cells, pushing 
it from a competition for survival to a competition for 

reproductive success. Adhesion therefore changes the 
evolution of behaviour regulation. In combination with 
an external chemoattractant gradient, this leads to the 
emergence of differentiation patterns in newly multicel-
lular organisms.

Methods
We model an evolving population of cells that can adhere 
to each other, divide, migrate and perform chemotaxis 
on a two-dimensional lattice containing a gradient of 
chemotactic signal. Cells consist of multiple lattice sites, 
giving them an explicit shape and volume. They also con-
tain an evolvable gene regulatory network that senses the 
environment and regulates the decision to either divide 
or migrate (explained below). Cell dynamics on the lat-
tice (movement, adhesion) are governed by the Cellular 
Potts Model (CPM) formalism [29, 30] and simulated 
with a Monte Carlo method. The population undergoes a 
seasonal culling, in which cells further from the chemoat-
tractant source have a higher chance of dying. Then, the 
chemoattractant source is placed at a different position, 
after which the new season starts. The custom software, 
written in C++, can be found at [56]. Parameter values 
are listed in Table 2.

Regulation of cell behaviour  Cells have a simple evolv-
able regulatory network that determines their behaviour: 
either migrating and following chemotactic signals, or 
growing and dividing. The overall network architecture 
has been previously used to model gene regulation in 
micro-organisms [35], and consists of 2 sensory nodes, 
3 regulatory nodes and an output node, totalling N = 6 
nodes (Fig. 1B). The sensory nodes receive the local con-
centration of chemoattractant (a real number between 
0 and 28) and the number of times the cell has already 
divided. The regulatory nodes receive input from the sen-
sory nodes and regulatory nodes, including themselves. 
The output node takes as input the state of the regulatory 
nodes, to determine whether the cell is in a migratory 
or dividing state. The regulatory nodes and output node 
are Boolean. The new state of each node i is calculated 
synchronously from the previous state of the network, as 
follows:

where ri(t + 1) is the regulatory input into node i from 
nodes j in state Sj at time t, which regulate i with weight 
wj→i . Si(t + 1) is then the new state of node i, at time 

ri(t + 1) =

j

wj→i Sj(t)

Si(t + 1) =

{

1 if ri > ρi
0 otherwise



Page 12 of 17Vroomans and Colizzi ﻿BMC Ecology and Evolution           (2023) 23:35 

t + 1 . The new state is 1 if the value of the regulatory 
input ri is greater than its activation threshold ρi . When 
the node j is an input node, Sj is the value of the input 
node times an evolvable scaling factor φj ; otherwise it is 
the Boolean state of a regulatory node (including i itself ). 
Since the update is synchronous, the state of all nodes 
is only updated after all new node states are calculated 
from the old node states. For each cell, the network state 
is updated every 20 MCS, to even out microscopic cell  
fluctuations. The networks of different cells are updated at 
different MCS to prevent artificial synchrony between cells.

When the state of the output node is 0, the cell is in 
migratory mode. When the state is 1 for ηinit consecu-
tive timesteps, the cell enters the dividing cell state, 
during which it does not migrate or perform chemot-
axis. It will need ηgrow timesteps to grow to twice the 
size (by increasing target size, AT  , every ηgrow/AT 
MCS) and prepare for division before it can actually 
divide. If, in that time, the output node becomes 0, the 
cell will shrink again and revert back to the migratory 

state, and will start the division process anew if the out-
put node becomes 1 again. Once the cell divides, the 
state of all nodes is reset to 0. A cell can divide a maxi-
mum of three times per season; when the output node 
remains one after that, the cell is non-migratory, but 
won’t divide again.

Upon cell division, the regulatory network is passed 
to the daughter cell with the possibility of mutations. 
Each parameter of the network ( wi , φi , ρi ) mutates inde-
pendently during cell division. Mutations occur with 
probability µω and change the values of these parame-
ters by a small random number sampled from a normal 
distribution with mean 0 and σ = 0.05.

Cellular Potts Model  The Cellular Potts Model dynam-
ics are implemented with the Tissue Simulation Toolkit 
[31], on a regular square lattice �1 ⊂ Z

2 of size L× L . 
A cell c consists of the set of lattice sites x ∈ �1 with the 
same spin s, i.e. c(s) = {x ∈ �1 | σ(x) = s} . The chemot-
actic signal is located on a second plane �2 , of the same 
size and spacing as �1.

Table 2  Parameters

AUE Arbitrary Units of Energy (see the formulation of the Hamiltonian in the Cellular Potts Model section), lattice site unit of area, lattice site length unit of distance, MCS 
Monte Carlo Step (unit of time)

Parameter explanation Values

L2 lattice size 500× 500 lattice sites

T Boltzmann temperature 16 AUE

� cell stiffness 4.0 AUE/[lattice site]2

AT cell target area 50 lattice sites

Cell adhesion

    Jα minimum J value between cells 4 AUE/[lattice site length]

    J′α minimum J value between cell and medium 8 AUE/[lattice site length]

    ν length of receptor and ligand bitstring 24 bits

    ν′ length ligand bitstring for medium adhesion 6 bits

Cell migration and chemotaxis

    µp strength of persistent migration 3.0 AUE

    τp duration of persistence vector 50 MCS

    µχ strength of chemotaxis 1.0 AUE

    kχ scaling factor chemoattractant gradient 5.0 molecules/[lattice site length]

Cell division

    ηinit time before cell in GRN state 1 can start growing 10000 MCS

    ηgrow time for cell in state 1 to grow to 2x AT  and divide 20000 MCS

Evolution

    τs duration of season 18× 104 - 50× 104 MCS

    pmin minimum probability of dying 0.05

    pmax maximum probability of dying 1.0

    dscale distance from gradient peak where death probability is 1
2
 maximum 40 or 80 [lattice site length]

    µR,I receptor and ligand mutation probability 0.01 per bit, per replication

    µω mutation probability of network parameters (w, f, ra) 0.02 per parameter, per replication

    σ standard deviation of mutation size 0.05
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The cells move in the �1 lattice due to the displace-
ment of their boundary, arising from stochastic fluc-
tuations. These fluctuations tend to minimise a cell’s 
energy, whose terms correspond to biophysically moti-
vated cell properties ([57]). The �1 lattice is updated 
through the Metropolis algorithm. Each Monte Carlo 
step (MCS), L× L lattice sites are drawn randomly. For 
each site belonging to the boundary of a cell, a ran-
dom site from its Moore neighbourhood, x , is selected 
which may copy its spin value σ(x) into this lattice site. 
To speed up simulations, we used an algorithm that 
only considers updates for neighbouring lattice sites 
that have a different s, as implemented in [58]. Whether 
an attempted spin copy is accepted depends on the con-
tribution of several terms to the energy H of the system, 
described by the Hamiltonian, as well as other biases Y. 
A copy is always accepted if energy is dissipated, i.e. if 
�H + Y < 0 (with �H = Hafter copy −Hbefore copy ), and 
may be accepted if �H + Y ≥ 0 because of “thermal” 
fluctuations that follow a Boltzmann distribution:

with T = 16 the Boltzmann temperature (in Arbitrary 
Units of Energy AUE), which controls the probability of 
energetically unfavourable copy events. The Hamiltonian 
consists of two terms, corresponding to cell size mainte-
nance and adhesion:

The copy biases, or “work terms”, Y consist of terms cor-
responding to cell migration and chemotaxis:

Cell size maintenance  Cell size A(c) = |c(s)| , the num-
ber of lattice sites that compose a cell, is assumed to 
remain close to a target size AT . Deviations from the tar-
get size are inhibited by adding the following term to the 
Hamiltonian:

with C the set of cells and � representing the resistance of 
cells against volume changes. A cell’s target volume may 
grow when it prepares to divide, and is halved again upon 
division (see also below).

Cell adhesion  The total adhesion energy resulting from 
interfaces between cells and with the medium is imple-
mented as:

P(�H ,Y ) = e
−(�H+Y )

T

H = Hcell size +Hadhesion

Y = Ymigration + Ychemotaxis

Hcell size =
∑

c ∈ C

�(A(c)− AT )
2

summing over all pairs of neighbouring pixels with differ-
ent s: 

(

x, x ′
)

.

δ
(

σ(x), σ(x ′)
)

 is the Kronecker delta which restricts the 
energy calculations to the interfaces.

As previously described [14], cells express ligand and 
receptor proteins on their surface that determine the sur-
face energy of cell interfaces, J

(

σ(x), σ(x ′)
)

 . Ligands 
and receptors are modelled as binary strings of fixed 
length ν (Fig.  1). Cell adhesion increases (i.e. lower J 
values) with greater complementarity between their 
receptors R and ligands I (i.e. larger Hamming distance 
D(R, I) =

∑ν
i=1 1− δ(Ri, Ii) ), where Ri and Ii are corre-

sponding bits in the receptor of one cell and the ligand of 
the other cell, and δ is the Kronecker delta function which is 
1 when the two bits match. Thus, given two cells with spin 
values σ1 and σ2 and their corresponding pairs of receptors 
and ligands (R(σ1), I(σ1)) and (R(σ2), I(σ2)):

with Jα = 4 so that J (σ1, σ2) ranges between [4, 52].
Adhesion of a cell with medium is assumed to 

depend only on the cell (the medium is inert, i.e. 
J (σmedium, σmedium) = 0 ), and in particular it depends only 
on a subset of the ligand proteins of a cell. This subset con-
sists of the substring of I, I[0,ν′] , which begins at the initial 
position of I and has length ν′ . The value of J (σ1, σmedium) 
is calculated as:

with J ′α = 8 and F(i) a piece-wise defined function (a 
lookup table). Thus, each bit Ii in I[0,ν′] contributes to 
J (σ1, σmedium) with a different weight, resulting in J values 
falling in the interval [8, 20].

The strength with which cells adhere to each other 
depends on both the J value between the cell and the 
medium, and the J value of the interaction between cells. 
This can be represented by the γ value, the surface tension 
between cells and medium:

Hadhesion =
∑

(x,x ′)

J
(

σ(x), σ(x ′)
)

(1− δ
(

σ(x), σ(x ′)
)

)

J
(

�1, �2

)

= J
�
+ 2� − D(R(�1), I(�2)) − D(R(�2), I(�1))

J (σ1, σmedium) = J ′α +

ν′
∑

i=1

F(i)Ii

F(i) =











4 if i = 1
3 if i = 2
2 if i = 3
1 if 4 ≤ i ≤ 6

γ = J (σ1, σmedium)−
J (σ1, σ2)

2
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When γ is negative, cells preferentially interact with 
the medium and do not adhere. In simulations where 
adhesion cannot evolve, we set J (σ1, σ2) = 36 and 
J (σ1, σmedium) = 14 → γ = −4 , yielding nonadhering 
cells. To simplify the notation in the main text, we use 
the subscripts c and m to refer to lattice sites belonging 
to cells and medium, so that Jc,m = J (σ1, σmedium) and 
Jc,c = J (σ1, σ2) , where the subscript c,c always assumes 
two different cells.

In a subset of simulations, the bitstrings of the recep-
tor and ligand responsible for adhesion are mutated upon 
cell division. These mutations occur in only one of the 
two daughter cells (chosen at random) with a per-posi-
tion probability µR,I . Mutations flip individual bits (from 
0 to 1, and vice versa).

Cell migration  We model migration (following [59]) 
by biasing cell movement to their previous direction of 
motion p(c) : extensions of a cell are energetically more 
favourable when they are closer to the direction of that 
cell’s p:

Where µp is the maximum energy contribution due 
to migration, and θp is the angle between p and the vec-
tor that extends from the center of mass of the cell to 
the lattice site into which copying is attempted. Every τp 
MCS the vector p is updated to reflect the actual direc-
tion of displacement of the cell over the past τp MCS 
(scaled to unit) (Fig.  1). We set τp = 50 MCS. Whether 
a cell migrates depends on its internal state. Dividing 
cells do not migrate, so their µp = 0 . Non-dividing cells 
have µp = 3. Note that all cells have the same τp , but they 
update their vectors at different MCS to prevent them 
from moving synchronously.

Chemotaxis  Individual cells are able to migrate towards 
the perceived direction of a chemoattractant gradient. 
In contrast to [14], the slope of the gradient is steeper 
and we removed a source of noise in the gradient signal, 
allowing individual cells to identify the location of the 
peak with ease.

The chemotactic signal is represented by a collec-
tion of integer values on a second two dimensional 
lattice ( �2 ⊂ Z

2 , with the same dimensions as the 
CPM lattice), which remain constant for the duration 
of one season ( τs MCS). The amount of chemotactic 
signal χ is largest at the peak, which is located at the 
center of one of the lattice boundaries, and from there 
decays linearly in all directions, forming a gradient: 

Ymigration = −µp cos(θp)

χ(d) = 1+ (kχ
dmax
100 ) ∗ (1−

d
dmax

) , where kχ is a scal-
ing constant, d is the Euclidean distance of a lattice 
site from the peak of the chemoattractant gradient, 
and dmax is the maximum distance between the source 
of the chemoattractant and any lattice site in �2 . Non 
integer values of χ are changed to ⌈χ⌉ (the smallest inte-
ger larger than χ ) with probability equal to ⌈χ⌉ − χ , 
otherwise they are truncated to ⌊χ⌋ (the largest integer 
smaller than χ).

A cell s only perceives the chemotactic signal on the 
portion of �2 corresponding to sites on �1 with that 
spin. We define the vector χ(c) as the vector that spans 
from the cell’s center of mass to the center of mass 
of the perceived gradient. Copies of lattice sites are  
favoured when they align with the direction of the vector 
χ(c) , i.e. when there is a small angle θc between χ(c) and 
the vector that spans from the center of mass of the cell 
to the lattice site into which copying is attempted (Fig. 1):

where µχ is the maximal propensity to move along the 
perceived gradient, and is set to µχ = 1 except for divid-
ing cells, whose µχ = 0 . A uniform random θc ∈ [0, 2π [ 
is chosen whenever |χ(c)| = 0 , i.e. when, locally, there is 
no gradient (due to the chemoattractant amount at each 
lattice site being rounded to integer values).

Seasonal dynamics  A population of N cells undergoes 
the cell dynamics described above for the duration of a 
season, i.e. τs MCS. Cells can divide throughout the sea-
son, and upon division will pass on their regulatory net-
work to the daughter cell with the possibility of muta-
tions (described above). At the end of the season, we 
assess the distance of each cell from the peak of the che-
moattractant gradient. The further the cell, the higher its 
probability of being killed before the new season starts. 
This is implemented as:

where pmin is the minimum probability of dying, pmax the 
maximum probability, dc is the distance of cell c to the 
peak of the gradient, and dscale is the distance at which 
the death probability is at half of the maximum. The 
smaller dscale , the more cells will die.

Abbreviations
CPM	� Cellular Potts Model
MCS	� Monte Carlo Step
GRN	� Gene regulatory network

Ychemotaxis = −µχ cos(θc)

Pdeath(dc) = pmin +
(pmax − pmin) ∗ d

3
c

d3scale + d3c
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Additional file 1. Division-early strategy evolved without adhesion. One 
season of a simulation which evolved a division-early strategy (Season 
duration=250000; high death rate; adhesion cannot evolve).

Additional file 2. Division-early strategy evolved with adhesion. One 
season of a simulation which evolved a division-early strategy (Season 
duration=250000; high death rate; adhesion can evolve).

Additional file 3. Assessment of evolved GRN responses in simulations 
with and without adhesion. A) We assess the steady state of the output 
node for all combinations of values for the input nodes (gradient concen-
tration and number of divisions) that are possible in the simulation (with 
the other nodes starting at 0), and then assign that combination a color in 
the 2D profile, with red=migratory (output node 0), blue=dividing (out-
put node 1). The profile can be read by starting on the bottom-left – as 
for a cell that has not divided yet and is far from the peak of the gradient 
– and following the yellow line. When the current pixel is red, the line 
moves up to indicate the cell migrating to a higher concentration of the 
gradient, and the line moves right when the pixel is blue to indicate a divi-
sion (increasing the number of divisions the cell has done). B) Examples 
of GRN responses of division-early cells (evolved with the possibility 
of evolving adhesion). The left-most cell only counts divisions: it switches 
to migrating at the third division, while the others migrate until they reach 
a particular concentration and then switch to division. For the left-most 
cell, the evolved gene regulatory network is depicted, with the input 
nodes in light blue, the regulatory nodes in orange and the output node 
in green. Blue edges are activating and red edges are repressing, with the 
thickness of the edge indicating the weight w of the interaction (weights 
are also indicated next to the edge). The number in the input node 
indicates the evolved scaling factor φ ; the numbers in the other nodes 
indicate the evolved activation threshold ρ of that node. C) Examples 
of GRN responses of division-late cells (evolved without adhesion). For 
the first individual, the evolved gene regulatory network is depicted. The 
simulations shown in B and C are used to seed the simulations in which 
adhesion evolution is switched (Fig. 3 of the main text).

Additional file 4. Division-late strategy evolved without adhesion. One 
season of a simulation which evolved a division-late strategy (Season 
duration=250000; high death rate; adhesion cannot evolve).

Additional file 5. Division-late strategy evolved with adhesion. One 
season of a simulation which evolved a division-late strategy (Season 
duration=250000; high death rate; adhesion can evolve).

Additional file 6. Evolved population size. The population sizes at the end 
of the last ten seasons in simulations with high death rate and very short 
seasons (180000 MCS). Simulations are sorted by their median first division 
times (indicated on the x axis), and colours group data from the same 
simulation. With these season parameters, division-late strategies typically 
evolve in simulations without evolution of adhesion, and division-early 
strategies evolve in simulations with evolution of adhesion. The simula-
tions shown here are used to seed the simulations in which adhesion 
evolution is switched (Fig. 3 of the main text). Resolution on division tim-
ing was limited to 10000 MCS.

Additional file 7. Evolved division timing strategies in all simulation sets. 
The median timing of cell divisions of the last 10 seasons in all sets of 
simulations, with varying season duration, death rates and with or without 
evolution of adhesion. Lines between dots connect values belonging to 
the same simulations.

Additional file 8. Evolved division timing strategies in simulations with a 
different maximum number of divisions. The median timing of cell divisions 
of the last 10 seasons in simulations with high selection pressure (short 
seasons, 180 000 MCS; and high death probability, dscale = 40 ). Lines 
between dots connect values belonging to the same simulations. On the 
right, snapshots of one season in representative simulations are displayed.

Additional file 9. Evolved division timing strategies in simulations with 
different death function. A) The function that determines the probability 

of death at the end of the season based on the distance of a cell from the 
peak of the gradient. In blue the function used for the simulations in the 
main text; in red, a linear function that a linear function that increases until 
it reaches probability of death = 1, and remains constant for further dis-
tances. B) Simulations run with or without adhesion, using the linear death 
rate function. C) Snapshots from one season of representative simulations 
with a linear death rate.

Additional file 10. Evolution of adhesion in simulations starting from 
individual evolved without adhesion. Evolution of adhesion in 20 simula-
tions, started with 4 individuals that had evolved without adhesion (5 
independent simulations per individual).

Additional file 11. Evolution of the opposite cell regulation strategy 
when adhesion is switched. A) For all simulations, the evolved timing of 
the first division is plotted against the evolved adhesion strength. Blue: 
simulations that were started with an adhering ancestor, but continued 
evolution without adhesion ( γ  fixed to -4); red: simulations started with a 
non-adhering ancestor that were allowed to evolve adhesion. B) Evolution 
of division timing in simulations started with a non-adhering ancestor. B’) 
Evolution of division timing over multiple seasons in simulations started 
with an adhering ancestor that were continued without adhesion.

Additional file 12. Effect of adhesion or non-adhesion on division timing. 
The distribution of division timings over one season for simulations with 
a single cell compared to simulations with 20 adhering or non-adhering 
cells with identical regulatory networks. For simplicity, divisions were 
simulated by having the cell cease migration or the same amount of time 
as an actual division would last, but without creating an additional daugh-
ter cell. This kept the group size the same throughout the run. There were 
also no mutations of adhesion or regulation. We show here two examples, 
one with cells evolved without adhesion, possessing a division-late strat-
egy; and one with cells evolved with adhesion, possessing a division-early 
strategy. Season duration=180000 MCS.

Additional file 13. Evolution of gradient sensing in populations switched 
to opposite adhesion regime. Distributions of the chemoattractant 
concentration at which divisions happen, in the ancestor and the five 
replicate simulations evolved from that ancestor. A) Simulations seeded 
with individuals evolved without adhesion, continued with evolution of 
adhesion. B) Simulations seeded with individuals evolved with adhesion, 
continued without adhesion.

Additional file 14. Competition experiment 1. A competition experiment 
between a cluster of adhering cells (green) and a cluster of non-adhering 
cells (purple), with division-late strategy.

Additional file 15. Competition experiment 2. A competition experiment 
between a cluster of adhering cells (green) and a cluster of non-adhering 
cells (purple), with division-early strategy.

Additional file 16. Competition experiment 3. A competition experi-
ment between a cluster of division-early ancestors (green) and a cluster of 
division-late descendants (purple) – both nonadhering.

Additional file 17. Replicates of competition experiment. Group size plot-
ted against the median distance of cells to the peak of gradient, shown for 
the first season of the competition experiment (0%=maximum distance, 
100%=at the peak). The graded lines with dots are the same as in Fig. 4. 
a-b) Competition between two groups with the same regulatory strategy, 
one adhering ( γ = 6 ; a), the other non-adhering ( γ = −4 ; b). c) Com-
petition between ancestral, division-early strategy and evolved, division-
late strategy; both non-adhering. d) Competition between two adhering 
groups, one with an ancestral, division-late strategy and one with a 
strategy evolved with adhesion (having become more division-early).

Additional file 18. Competition experiment 4. A competition experi-
ment between a cluster of division-late ancestors (green) and a cluster of 
division-early descendants (purple) – both adhering.

Additional file 19. Developmental dynamics of homogeneous adhering 
cluster. One season of a simulation with a clonal cluster of initially 50 
cells (i.e. all have the same regulatory strategy). The regulatory strategy 
was sampled from the last season of a simulation in which the population 
was switched from non-adhering to evolution of adhesion.
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