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Abstract 

Background:  A major challenge to understanding how biodiversity has changed over time comes from depauper-
ons, which are long-lived lineages with presently low species diversity. The most famous of these are the coelacanths. 
This clade of lobe-finned fishes occupies a pivotal position on the vertebrate tree between other fishes and tetrapods. 
Yet only two extant species and fewer than 100 extinct forms are known from the coelacanth fossil record, which 
spans over 400 million years of time. Although there is evidence for the existence of additional genetically isolated 
extant populations, a poor understanding of morphological disparity in this clade has made quantifying coelacanth 
species richness difficult.

Results:  Here, we quantify variation in a sample of skulls and skeletons of the Triassic eastern North American coe-
lacanth †Diplurus that represents the largest assemblage of coelacanth individuals known. Based on the results of 
these quantitative comparisons, we identify a diminutive new species and show that multiple lacustrine ecosystems 
in the Triassic rift lakes of the Atlantic coastline harbored at least three species of coelacanths spanning two orders of 
magnitude in size.

Conclusions:  Conceptions about the distribution of species diversity on the tree of life may be fundamentally mis-
guided when extant diversity is used to gauge signals of extinct diversity.

Our results demonstrate how specimen-based assessments can be used to illuminate hidden biodiversity and show 
the utility of the fossil record for answering questions about the hidden richness of currently species-poor lineages.
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Introduction
Major changes to biodiversity over the history of life 
on Earth have shaped extant species richness [1, 68, 
78]. Although one end of the spectrum of biodiversity-
radiations-are a historically well-studied evolutionary 
phenomenon [1, 31, 33, 75], the origins of species-poor 
lineages that have persisted for millions or tens of mil-
lions of years are gaining attention (e.g., [22, 23, 57]. Phy-
logenomic studies now recognize depauperons across of 
different portions of the Tree of Life (e.g., [2, 10, 40, 42, 

66, 89]), demonstrating that depauperacy is a consistent 
evolutionary pattern.

Nonetheless, the fossil records of many currently 
species-poor clades show how a view of the evolution-
ary history of these clades based solely on extant forms 
is often biased. Among vertebrates, clades now repre-
sented by one or a handful of species are represented by 
numerous species with varying morphologies in the fossil 
record [35–38, 57, 77]. This discrepancy between extant 
and extinct species richness and disparity in depauper-
ons means that rigorous species delimitation using quan-
titative methods is particularly important for properly 
detecting their diversity and understanding their evolu-
tionary history.
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Coelacanths (Actinistia) are one of the most famous 
species-depauperate lineages. This clade  diverged from 
other jawed vertebrates during the Silurian [3, 29, 30, 43] 
and represents the living sister clade to all other sarcop-
terygians, or lobe-finned fishes [3, 8, 55]. Despite their 
historical notoriety as a species-poor, morphologically 
conservative lineage, the fossil record of coelacanths 
has shown that this clade diversified into a wide variety 
of morphologies in the ancient past [17, 29, 49]. Fossil 
coelacanths show bursts of species diversity during the 
Devonian and Triassic [83] and achieved a high degree of 
body size variation ranging from diminutive species less 
than 5 cm long to 6 + m giants representing some of the 
largest freshwater fishes [18].

Only two species of coelacanths confined to deep 
ocean waters survive today: Latimeria chalumnae and L. 
menadoensis [39, 79]. These species diverged from other 
coelacanths during the Cretaceous [17, 83] and last share 
common ancestry over 35 million years ago [41]. There 
is also evidence for additional, deep splits among popula-
tions in the two recognized Latimeria species [44]. How-
ever, the  secludedhabitats and small population sizes of 
extant coelacanths mean that there is a dearth of speci-
mens available for assessing morphological variance in 
these populations. This precludes our ability to under-
stand current coelacanth species diversity and morpho-
logical disparity, which might otherwise inform species 
delimitation in the fossil record.

The eastern margin of North America is known for 
its extensive fossil record from Triassic-Jurassic rift 
lakes that formed during the breakup of Pangaea (e.g., 
[65]. Several formations representing these ecosystems 
preserve the most extensive collection of coelacanths 
known, extant or extinct (e.g., [9, 70–72, 76]. Yet, just 
how many species of coelacanths lived in this region dur-
ing the Triassic has remained contentious for over a cen-
tury [9, 70–72, 76].

In this paper, we quantify phenotypic disparity and 
species richness in a sample of over 500 individual coe-
lacanths from a single locality with a combined approach 
using tools from geometric morphometrics, meristics, 
and phylogenetics. This allows us to critically assess coe-
lacanth diversity in the Triassic eastern North American 
rift, which leads us to recognize one new species and 
provides a basis for reanalyzing actinistian diversity in 
deep time. Our study reinforces the necessity of quantita-
tive methods for species delimitation among depauperate 
fossil lineages and shows how assumptions about the spe-
cies richness of a lineage might cause underestimation of 
their ancient diversity.

Methods
Sampling
In order to estimate the species richness of Triassic coe-
lacanths in eastern North America, we examined over 
500 specimens of coelacanths collected during the 1940s 
Firestone Library excavation in Princeton, New Jersey 
[70, 72]. Of these, n = 55 specimens possessed skulls with 
exceptional preservation allowing us to perform a vari-
ety of linear and geometric morphometric comparisons. 
We selected a subset of n = 19 individuals represented by 
articulated skulls and skeletons showing details of sus-
pensorium, opercular series, and postcranial anatomy for 
Bayesian- and parsimony-based phylogenetic analyses. 
We also sampled an additional five specimens from the 
Old Granton Quarry in Bergen, New Jersey and exam-
ined a skull and partial skeleton of a large coelacanth 
collected in 1975 from the Solite Quarry site in North 
Carolina. Measurements made on this dataset using digi-
tal calipers were combined with measurement data from 
[29, 70, 72, 76]. Together, this dataset represents the larg-
est known collection of coelacanth material from a single 
region and time (Carnian-Norian, e.g., [45]).

Phylogenetic analysis
We conducted several rounds of phylogenetic analysis on 
the morphological dataset of Toriño et al. [83] with wild-
card genera excluded, which consists of 48 taxa scored 
for 110 characters. To assess how different phylogenetic 
methodologies affected relationships among coelacanths, 
we conducted both Bayesian and parsimony analyses.

We conducted an analysis under parsimony using the 
program TNT v. 1.5 [34]. Initially, we performed a Wag-
ner search with space for 1000 trees and default param-
eters for ratchet, tree fuse, drift, and sectorial search. 
This was followed by a round of traditional bisection-
reconnection (TBR) branch swapping with space for 
100,000 trees to explore additional topologies. The result-
ing MPTs were summarized in a strict consensus topol-
ogy. We also resampled the dataset over 100 replicates to 
obtain bootstrap support values for branches. Parsimony 
analysis was conducted using both the dataset includ-
ing YPM VPPU 14555 and without this specimen, which 
we resolved as a wildcard in the initial run. A list of apo-
morphies for each run is in the Additional file  2, and 
the inputted morphological matrix and output trees are 
included in the Additional file 3.

We conducted Bayesian analysis of the modified mor-
phological dataset of Toriño et  al. [83] and age dates 
for fossil occurrences taken from that study and addi-
tional sources for the new coelacanth material [45, 48] 
using the program BEAST 2.6.6 [6] with the fossilized 
birth–death (FBD) model as the tree prior [32]. A single 
uncorrelated lognormal clock was used with mean and 
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standard deviation values of 1.0 and 0.33, respectively. 
We conducted three independent runs over 1 × 107 mil-
lion generations with a 1 × 106 pre-burnin. We used 
Tracer v. 1.7.2 [67] to check for convergence of posteri-
ors. The posterior set of trees generated from this analy-
sis were summarized into a maximum clade credibility 
(MCC) topology using TreeAnnotator 2.6.4 [6] with a 
25% burnin. The input xml file and resulting tree, state, 
and log files from the Bayesian analysis are included in 
the Additional file 3.

Linear morphometric analyses
In order to assess simple dimensional differences among 
the sample of coelacanths examined in this contribution, 
we collected measurement data for the following dimen-
sions: anteroposterior skull length from the tip of the 
premaxilla to the posterior end of the opercle, dorsoven-
tral skull height from the base of the angular to the mid-
length of the parietal, maximum orbit height and length, 
the number of ridges observed on the visible opercle 
of each specimen, and the number of angular foramina 
visible. The latter two counts were taken using light 
microscopy. We compared measurements for  n = 55 of 
the best-preserved skulls from the Granton Quarry and 
Firestone sites, and then among these and an additional 
n = 7 specimens from these sites and other localities of 
the Newark Supergroup. Plotting was conducted in the R 
package ggplot2 [88].

Species‑site diversity and per‑site size disparity
Based on the results of our phylogenetic, linear meris-
tic and morphometric, and geometric morphometric 
analyses, we assembled catalogues of coelacanth species 
presence-absence data at several sites in eastern North 
America (Schainin 1943; Schaeffer [71, 72]; this study). 
Plotting was conducted in the R package ggplot2 [88]. 
As a metric of per-site size disparity, we calculated the 
difference in total length between the largest and small-
est coelacanths reported from each of the localities we 
investigated. In several cases (i.e., Granton Quarry, Fire-
stone Library), it was necessary to estimate the sizes of 
the largest reported individuals of the species †Diplu-
rus longicaudatus based on complete specimens of the 
same species reported from elsewhere (i.e., YPM VP 630; 
Schaeffer [71]). Plotting was conducted in the R package 
ggplot2 [88].

Results
Geological and environment setting
The massive coelacanth collection presented here was 
found in the Firestone locality of Princeton, New Jersey 
during the excavation of the Firestone Library in 1946. 
This site is centered on the Newark basin, the largest of 

the exposed rift basins formed during the breakup of 
Pangea between the Late Triassic and Early Jurassic [53, 
80]. Infilling of the basin occurred over approximately 
30 million years in the Triassic and produced three main 
units in descending chronological order: the Stockton, 
Lockatong, and Passaic Formations [51, 53]. The Stock-
ton Formation consists largely of red and purple clas-
tic conglomerate rocks, red to yellow-grey well-sorted 
arkose, and red to brown siltstone and mudstone [19, 
54]. Much of the great lateral extent of the geology in this 
formation has been interpreted as alluvial fans result-
ing from fluvial and lacustrine processes [80]. Conform-
ably overlying the Stockton Formation is the Lockatong 
Formation. The Lockatong Formation covers an area 
of 7000  km2 and has a maximum thickness of approxi-
mately 1100  m [19]. The Lockatong Formation beneath 
the Firestone locality is around 450 m thick and dips 10 
degrees north [19]. Sedimentary infilling of the Locka-
tong Formation reflects cyclical periods of the rise and 
fall of lakes, referred to as Van Houten cycles [61, 62, 85]. 
Van Houten cycles have a periodicity of approximately 
20,000 years and are roughly divided into three sections 
chiefly containing large grey to red clastics to dolomites, 
laminated red to green organic-rich siltstone and clay-
stone, and largely desiccated calcareous clastic units [19, 
60]. These three sections are thought to correspond to 
periods of lake level rise, lake level stasis, and lake level 
fall, respectively, driven by orbital climate dynamics [51, 
80]. Lacustrine ecosystem changes composed of Van 
Houten cycles ranging from ~ 90 kyr to ~ 2000 kyr have 
also been observed in the Lockatong Formation [51, 53, 
60].

The Firestone locality lies approximately 70  m above 
the contact between the Stockton and Lockatong For-
mations [74]. The collection of coelacanths examined for 
this study were all preserved within a restricted, < 20 cm 
layer of argillite. A number of specimens are preserved 
in regions where fractionation occurred along bedding 
planes, resulting in bands of argillite-derived soft lim-
notic clay [74]. Fossils preserved in these regions are far 
more visible and better preserved than those found in the 
unchanged argillite. Other fishes found in surrounding 
regions of the Lockatong Formation include the actin-
opterygians †Turseodus, †Cionichthys, and †Synorichthys 
and the shark †Carinacanthus [59, 63].

Coelacanth fossils have also been found in surround-
ing regions of the Lockatong and Stockton Formations. 
Shainin [76] described a collection of †Diplurus from 
the Granton quarry in North Bergen, New Jersey. The 
Stockton Formation at this locality is approximately 
700  m thick; †Diplurus is found in the upper section, 
approximately 640  m above the base [74]. The lithology 
of this section consists of alternating layers of sandy to 
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silty sandstone and dark sandy to argillaceous shales [76]. 
Small coelacanths are found here in the dark shale layers 
[76]. Similar assemblages have been found embedded in 
dark shale in the upper half of the Lockatong Formation 
in Montgomery County, Pennsylvania.

Boonton, New Jersey is the site of one of specimens 
shown as part of the collection here. The Boonton For-
mation consists of large red siltstone and sandstone sec-
tions alternating with grey siltstone, as well as red, brown 
and grey clastics, and evaporite layers [61, 62]. The unit is 
part of the Passaic Group (formerly the Brunswick For-
mation) and is among the youngest sedimentary units 
in the Newark Basin [61, 62]. Myriad other fish fossils, 
including †Semionotus, †Redfieldius, †Dictyopyge, and 
†Ptycholepis, have been found in the uppermost section, 
which is composed of a grey siltstone laminite [61, 62, 
73]. Single specimens have also been found in the Lock-
atong and Passaic formations in the Danville area and 
Fauquier County, Virginia.

Various remains of †Diplurus longicaudatus have also 
been identified in the Connecticut Valley. While small 
coelacanth specimens assigned to †Diplurus are the 
vast majority of coelacanths present in the New York-
New Jersey areas, such as the Firestone Library site, †D. 
longicaudatus is the only species to have been found in 
the Connecticut Valley [74]. The lithology of the Shut-
tle Meadow Formation, which bears †Diplurus in this 
region, consists largely of arkose, sandstone, small 
amounts of shale, and siltstone [74].

Other samples analyzed in this paper were collected 
from the Solite Quarry in North Carolina-Virginia, USA. 
This section rests in the Dan River-Danville basin, a 
half-graben along the Chatham fault zone of the Meso-
zoic rift system [5, 64]. This region consists largely of 
lacustrine shales, sandstones, and mudstones that were 
layered cyclically and are fossiliferous [28, 64]. Over 30 
cyclical layers are present in this area, which are thought 
to reflect Milankovitch Cycles (orbital dynamic-driven 
cycles in lake-depth similar to Van Houten Cycles) and 
contain some of the most productive Triassic fossil 
assemblages in the world [5, 28].

Phylogenetic analyses
Phylogenetic analysis of the specimen-level dataset 
(modified from [83]) under Bayesian and parsimony 
frameworks produced similar positions for the sampled 
coelacanth specimens (Figs. 2, 3).

Parsimony analysis of the dataset (Fig.  2; Additional 
file  1: Fig. S1) finds largely unresolved relationships 
among actinistians and places the Firestone Library and 
Old Granton Quarry coelacanths in a polytomy at the 
base of this lineage in the strict consensus topology of 36 
most parsimonious trees (MPTs) found with moderate 

support (bootstrap value = 0.5). MPTs produced from 
this analysis (length = 348; consistency index = 0.356, 
retention index = 0.732) position the eastern North 
American coelacanth clade (bootstrap support = 5) sis-
ter to Latimeriidae (bootstrap support = 6) and resolve 
distinct subgroups within the eastern North American 
lineage delimited by the ornamentation of the opercle 
(Fig.  2). The uncertainty in the phylogenetic relation-
ships among the eastern North American coelacanth 
clade, which drives the production of the polytomy 
in the consensus tree, is likely attributable to  the lack 
of material known for YPM VPPU 14,555, a Firestone 
Library specimen referred to †Diplurus longicaudatus. 
Exclusion of this partial skull resulted in the resolution 
of a monophyletic eastern North American coelacanth 
group positioned as the sister to the Latimeriidae in all 
18 MPTs (length = 347, consistency index = 0.355, reten-
tion index = 0.731) found, as well as in the strict consen-
sus topology (Fig.  1a). 12 MPTS show the formation of 
a clade of eastern North American Triassic coelacanths 
sharing a striated opercle (Fig. 2b). The monophyly of Tri-
assic eastern North American coelacanths is supported 
by a low bootstrap value of 34 (Additional file 1: Fig. S1d), 
and a value of 0 supported the position of Triassic east-
ern North American coelacanths in the Latimeriidae.

In the Bayesian time-calibrated tree (Fig. 3), all eastern 
North American species are resolved as a monophyletic 
lineage within †Mawsoniidae, a cosmopolitan Mesozoic 
coelacanth clade [4, 14–16, 25, 26, 50, 81, 83], as the sister 
lineage to all Jurassic-Cretaceous mawsoniids included in 
the dataset. The monophyly of eastern North American 
Triassic coelacanths is supported by a moderate poste-
rior value of 0.58. The inclusion of these eastern North 
American coelacanths in †Mawsoniidae (excluding †Hep-
tanema and †Yunnancoelacanthus) is supported by a 
higher posterior value of 0.76. The eastern North Ameri-
can clade is estimated to diverge from other mawsoniids 
253.22 million years ago (95% CI: 234.10–258.81  Ma), 
approximately the age of the Permian mass extinction.

The eastern North American clade itself is divided into 
four distinct groups. The first to diverge consists of the 
large-bodied specimen YPM VP 7516 from the Carnian 
of North Carolina preliminarily referred to †Diplurus 
longicaudatus in the Yale Peabody Museum collections 
(Fig.  3). This result seems to be primarily driven by the 
age of YPM VP 7516. Next, two clades consisting of coe-
lacanths from the Lockatong Formation diverge from 
each other separated by the presence of extensive opercle 
ornamentation. Two subclades of note are present in the 
clade consisting of species with extensively ornamented 
opercles. One of these subclades consists of the large 
Firestone coelacanth specimen YPM VPPU 14555 (cf. 
†Diplurus longicaudatus) and the small skull YPM VPPU 
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14941 (Fig.  3). The other subclade consists of all small-
bodied coelacanth specimens from the Firestone Library 
excavation with heavily striated opercles (Fig.  3). The 
striated opercle lineage and that containing YPM VPPU 
14555 and YPM VPPU 14941 form the sister clade to all 
coelacanth with minimal opercle ornamentation from 
Firestone and Old Granton Quarry (Fig. 3).

Morphometric analyses
To investigate the morphological variation in the eastern 
North American coelacanth sample that might underlie 
our phylogenetic results, we performed both linear and 
2D geometric morphometric analyses on the sample 
of coelacanths from the Firestone Library locality (with 
the exceptionally preserved Old Granton Quarry speci-
men YPM VPPU 14558a also included) to assess the 
level of variation in skull proportions, ornamentation, 
and neurovasculature in this sympatric population or 
set of populations (Figs.  4, 5). Two groups consistently 
distinguished by the frequency of radiating striations on 
the opercle (0–6 vs. 20 +) and foramina on the angular 
(5 + vs. 4) were found to exist in the Firestone sample 
of small-bodied coelacanths (Fig.  4a, b). These different 
groups differed little in size and showed similar skull and 
orbital sizes (Fig. 4c, e) and proportions (Fig. 5). Higher 

opercle striation and angular foramina counts are not 
associated with longer skull or deeper skulls in the Fire-
stone Library and Granton Quarry sample (Fig. 5), sug-
gesting these traits are independent of head and body 
dimensions.

We expanded our linear morphometric dataset to 
include records of coelacanths from several other locali-
ties across eastern North America, including further 
samples from the Old Granton Quarry site, the giant 
North Carolina specimen YPM VP 7516, several speci-
mens of †Diplurus longicaudatus, skulls assigned by 
Schainin (1943) to the species †Osteopleurus milleri, and 
an opercle referred by [76] to †O. milleri grantonensis. 
We found that cranial material assigned to †O. m. milleri 
falls within the range of variation seen in the crania of †D. 
newarki, suggesting these are synonymous [74]. Skulls 
assigned to †D. longicaudatus (including YPM VP 7516) 
were much larger than all other specimens and possessed 
the numerous opercle ornamentations characteristic 
of that species [74]. Finally, the opercle from Granton 
Quarry tentatively referred to †O. milleri grantonensis by 
Schainin (1943) shows a similar degree of ornamentation 
as the ornamented-opercle group from Firestone Library 
and belonged to a small-bodied coelacanth of similar size.

Fig. 1  Examples of exceptionally preserved †Diplurus from the Firestone Library Excavation and Granton Quarry sites. a YPM VPPU 14,944 †D. 
newarki, b YPM VPPU uncatalogued †D. newarki, c YPM VPPU 14918a †D. newarki, d YPM VPPU 14,558 †D. newarki, e YPM VPPU uncatalogued †D. 
newarki, f YPM VPPU 14,924 †D. enigmaticus, g YPM VPPU uncatalogued †D. newarki, h YPM VPPU 14,920 †D. newarki, i YPM VPPU uncatalogued †D. 
newarki, j YPM VPPU 14,929 †D. newarki, k YPM VPPU 29,366 †D. newarki, l YPM VPPU 14,933 †D. newarki, m YPM VPPU 14,935 †D. newarki, n YPM 
VPPU 14,949 †D. enigmaticus, o YPM VPPU 14,932 †D. newarki, p YPM VPPU 14,940 †D. newarki, q YPM VPPU 14,921 †D. newarki, and r YPM VPPU 
14,939 †D. enigmaticus 
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Systematics
Actinistia Cope 1871.

Latimerioidei Schultze, 1993.
†Diplurus Newberry 1878.
†Diplurus enigmaticus sp. nov.
LSID urn:lsid:zoobank.org:pub:F29E460E-D072-4C3B- 

912C-928D8677CC2C.
Material. YPM VPPU 14924 (holotype), skull and 

mandibles (Firestone Library). YPM VPPU 14949, 

14939,14943, 14558b; skulls with mandibles (Firestone 
Library). AMNH 15222, opercle (Granton Quarry).
Diagnosis. †Diplurus enigmaticus is distinguished 

by the following combination of features: maximum 
standard length of approximately 150 mm (shared with 
†Diplurus newarki; 690 + mm in †D. longicaudatus), 
numerous (> 20) well-delimited radiating ridges on 
opercle (maximum of seven observed in †D. newarki; 
irregular lineations and tubercles present in †Diplurus 

Fig. 2  Parsimony phylogenetic hypothesis of the exceptional eastern North American coelacanth sample. a Strict consensus topology resulting 
from the parsimony analysis with YPM VPPU 14,955 removed, with b equally most parsimonious trees showing recovery of a clade with striated 
opercles (highlighted to match color in Fig. 1). Silhouettes of coelacanths (except Latimeria and †Foreyia) drawn after Schaeffer [11, 18, 27, 74]

Fig. 3  Bayesian phylogenetic hypothesis of the exceptional eastern North American coelacanth sample. a Bayesian time-calibrated maximum 
clade credibility tree of coelacanth relationships, including specimen-level analysis of Lockatong specimens. The clade identifiable as †Diplurus 
newarki is highlighted in blue and the new species of †Diplurus, †D. enigmaticus, highlighted in red. b Exemplar skulls of three major lineages within 
†Diplurus, color-coded to match the phylogeny (see b)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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longicaudatus; Figs.  4, 5); four angular foramina (zero 
to two in †D. longicaudatus; five or more in †D. new-
arki; Figs. 4, 5); premaxilla with reduced number (8) of 
enlarged, conical teeth (11 in each element in †D. new-
arki; [74])..
Remarks. Schaeffer [7, 70, 71] provided comprehensive 

descriptions of the Lockatong, Stockton, and Boonton 
Formation †Diplurus material, including several speci-
mens examined for this study. We refer the reader to 
these illustrated osteologies for details about the anatomy 
of the genus. The differential diagnosis given by Schaef-
fer [74] for †Diplurus (†D. longicaudatus + †D. newarki) 
includes the following features: (1) incomplete braincase 
ossification; (2) three posterior flanges on the anterior 
ethmoid; (3) large ovoid antotic flanges on the basisphe-
noid; (4) ossified otooccipital region; (5) basisphenoid 
not fused to parasphenoid; (6) ungrouped parasphenoid 
teeth; (7) largely unornamented skull dermal bones; (8) 

numerous small rostral bones; (9) small tooth-bearing 
premaxilla; (10) three subequal frontal-ethmoid shield 
bones; (11) anterior frontals meet at midline (variable; 
(12) rectangular supratemporals do not reach posterior 
to intertemporals; (13) large dermosphenotic medially 
borders intertemporal; (14) extrascapulars reduced in 
size; (15) absence of distinct antorbital; (16) no sclerotic 
ring; (17) large sensory canal pores line postorbital and 
squamosal; (18) absence of subopercle; (19) short lower 
jaw; (20) dentary and splenial elongated; (21) lower jaw 
concave. Of these, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 18, 19, and 21 are found together in other Trias-
sic or post-Devonian coelacanths described subsequently 
(i.e., Foreyia and Ticinepomis; [17, 69, 74]).  Specimens 
of †Diplurus enigmaticus show features 7, 8, 9, 11, 12, 
13, 14, 15, 16, 17, 18, 19, 20, and 21 and have previously 
been assigned to this genus [74]. Apart from the features 
noted in the diagnosis section, †Diplurus enigmaticus 

Fig. 4  Linear morphometrics and counts of the Lockatong Formation coelacanth sample. Comparative graphs showing differences in cranial 
features (a, b), skull dimensions (in cm) c and skull proportions d, e among †Diplurus newarki and †Diplurus enigmaticus sp. nov. Red indicates skulls 
assigned to †Diplurus enigmaticus sp. nov. Blue indicates skulls assigned to †Diplurus newarki sp. nov
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individuals fall within the range of variation observed in 
†Diplurus newarki and †Diplurus longicaudatus. Accord-
ingly, our comparisons below focus on the three features 
that we argue are apomorphies of †Diplurus enigmaticus.

Schainin (1943) considered the presence of discrete 
striations on the opercle to be a diagnostic apomor-
phy of †Osteopleurus, whereas Schaeffer [74] suggested 
this feature was not diagnostic based on the variation 
in opercle ornamentation he observed in the Firestone 
Library excavation coelacanth assemblage. Our quanti-
fication of key skull characteristics in coelacanths from 
both Firestone Library and Granton Quarry shows that 
small-bodied coelacanths with heavily striated opercles 
also consistently possess four angular foramina, whereas 
†Diplurus newarki consistently possesses fewer than 10 
opercle striations and five angular foramina. There is no 
continuous variation in either of these features. The oper-
cle ornamentation of †D. enigmaticus also distinguishes 
this species from the much larger †D. longicaudatus. 
The ornamentation on the opercle of †D. longicaudatus 
consists of numerous weak ridges that span the anter-
oposterior axis of the opercle and run posteroventrally 
(Fig.  8). In †D. enigmaticus, these ridges are straight-
ened and radiate from a center located midway along the 

dorsoventral axis of the bone (Figs. 6, 7, Fig. 8). Further, 
there is no evidence for more than one or two distinct 
angular foramina in any specimen of †D. longicaudatus 
[71, 72] in contrast to the four foramina found in †D. 
enigmaticus. †D. enigmaticus almost certainly does not 
represent a juvenile form of †D. longicaudatus, as the 
skull and skeleton are strongly ossified and are not drasti-
cally proportionally different [71] as in the skulls of small 
juveniles and adults of the extant coelacanth Latimeria 
[24].

A third osteological feature that distinguishes speci-
mens of †D. enigmaticus from †D. newarki is the size 
of the premaxillary dentition (Fig.  9). YPM 14924, the 
holotype complete skull of †D. enigmaticus, includes 
an enlarged premaxilla with at least 8 conical teeth that 
appear much larger than in specimens of †D. newarki, 
such as YPM 14558a (see also Fig. 4 in [74]). Specimens 
of †D. newarki also possess a higher premaxillary tooth 
count of 11 tooth positions in each premaxilla [74].

Discussion
Diversity and phylogenetic position of †Diplurus
In this study, we have quantified coelacanth diversity at 
several exceptional assemblages from the Triassic rift 

Fig. 5  Comparative proportions of Firestone coelacanth skulls. Plots showing associations between a–e different orbit and skull measurements 
(in cm) figured and f, h the absence of association between g opercle ridge count, g angular foramina count, and skull length (which roughly 
approximates size). Red indicates skulls assigned to †Diplurus enigmaticus sp. nov. Blue indicates skulls assigned to †Diplurus newarki sp. nov
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Fig. 6  Comparative opercle anatomy of †Diplurus newarki and †Diplurus enigmaticus sp. nov. Blue denotes specimens of †Diplurus newarki, red 
denotes specimens of †Diplurus enigmaticus 
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blue denotes specimens of †Diplurus newarki, red denotes specimens of †Diplurus enigmaticus 
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lakes of eastern North America. This approach allows us 
to quantitatively assess the validity of several previously 
named species from this region [76] and provide strong 
phylogenetic and morphometric evidence for the exist-
ence of the unrecognized, small-bodied form, †Diplurus 
enigmaticus, living in sympatry with the similarly-sized 
†Diplurus newarki and the much larger †Diplurus longi-
caudatus at the Firestone Library excavation and possibly 
Granton Quarry [70–72]. Our results also support syn-
onymy of †Osteopleurus milleri with †D. newarki [74] and 
corroborate the hypothesis that minor size differences 
among coelacanth specimens from northeastern North 
America do not warrant the recognition of new species 
(thereby making †O. m. grantonensis a nomen dubium 
sensu [74].

Intensive sampling of these Triassic eastern North 
American coelacanths also provides new information 
on the evolutionary relationships of these freshwater 
species. Placing †Diplurus among coelacanths has been 
difficult. Alternative approaches to phylogenetic recon-
struction have allied this genus with both the Latim-
eriidae and the extinct coelacanth clade †Mawsoniidae, 
which was the dominant lineage during much of the 

Mesozoic [15, 17, 18, 83]. Although we still found con-
flicts between the relationships of †Diplurus newarki, 
†Diplurus longicaudatus, and †D. enigmaticus to other 
coelacanths resolved in parsimony and Bayesian frame-
works (cf. [83], our intensive sampling suggests (1) that 
these eastern forms are more likely early-diverging mem-
bers of †Mawsoniidae than Latimeriidae (Figs. 2, 3,[17]) 
and (2) the somewhat ambiguous phylogenetic positions 
of these eastern North American coelacanth species may 
result from an incomplete understanding of character 
evolution at a critical junction in the coelacanth tree: the 
divergence of the Mesozoic mawsoniids from Latimeria 
and its closest relatives in Latimeriidae [13, 15, 17, 83].

Coelacanths as a depauperate vertebrate clade
The existence of depauperate, evolutionarily stagnant lin-
eages has been a matter of great interest since this pat-
tern was first recognized (e.g., [12, 13, 21, 47, 82]. One 
central point of contention has been whether continu-
ously low species diversity across time scales of tens of 
millions of years in many of these clades is driven by gen-
uinely low speciation rates or simply the incompleteness 
of the fossil record (e.g., [12, 13, 18, 57, 77]. In the case 

YPM VPPU 14558

YPM VPPU 14918

YPM VPPU 14929 YPM VPPU 14939

YPM VPPU 14949

YPM VPPU 29366

YPM VPPU 14933YPM VPPU 14944

Fig. 8  Comparative angular anatomy of †Diplurus newarki and †Diplurus enigmaticus sp. nov. Blue denotes specimens of †Diplurus newarki, red 
denotes specimens of †Diplurus enigmaticus 
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of depauperons, rigorous species delimitation is there-
fore all the more essential, as these clades might show 
a lower level of morphological disparity across species 
boundaries if taxic depauperacy is coupled with reduced 
evolvability. Extant coelacanths present an example of 
this phenomenon,despite diverging over 30 million years 
ago, the two recognized species of Latimeria vary little in 
morphology [39, 41, 79]. The low number of characteris-
tics distinguishing coelacanths with old common ances-
tors obscures whether deep divergences in this clade are 
indicative of speciation [44].

The diversity and size disparity of coelacanths found 
in the Triassic of eastern North America is higher 
than most previously reported assemblages of actinis-
tians from the Mesozoic. Although multiple coela-
canths have been described from the same geological 
units dating to the early Mesozoic [17], our site-based 
approach confirms that three species spanning a large 
range of body sizes were living in the same lakes and 
waterways. At the same time, the anatomy of all three 
species at Firestone and Granton Quarry are remarka-
bly similar,these species all show similar fusiform body 
plans and differ extensively only in the ornamentation 

of their opercles, number of foramina in their lower 
jaws, the size and number of their premaxillary teeth, 
the form of their scalation, and the form and counts of 
their fins [71, 72] The observation of high size disparity 
coupled with low skeletal differentiation in the Locka-
tong coelacanth fauna supports the observation that 
the prevailing pattern in this clade is morphological 
conservatism [13, 15, 18, 83, 87],but see [17].

The species diversity of †Diplurus observed in Lock-
atong and Boonton Formation assemblages clearly 
contrasts with the view of coelacanths as a perpetu-
ally depauperate lineage (e.g., [13, 18, 52]). Instead, 
our results underscore the importance of quantitative 
approaches to species delimitation in the fossil record 
(e.g., [84]). In the case of coelacanths, our understand-
ing of the evolutionary history of the total clade might 
be warped by observations of the evolutionary his-
tory of the crown group. Latimeria is currently rep-
resented by two species with an estimated common 
ancestor living > 30 million years ago [41, 46] that may 
have consistently lived in the marine benthos [20]. Fur-
ther, Latimeria chalumnae and L. menadoensis pos-
sess slow molecular substitution rates at selectively 
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Fig. 9  Comparative cranial anatomy of †Diplurus newarki and †Diplurus enigmaticus sp. nov. Blue denotes specimens of †Diplurus newarki, red 
denotes specimens of †Diplurus enigmaticus 
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constrained genes than most vertebrates (e.g., [3, 7, 
58, 86]), although other regions of the genome thought 
to undergo neutral evolution (i.e., fourfold degenerate 
sites) show similar rates of change to other chordates 
[56].

There is genomic evidence for additional deep (> 10 
million year) divergences among extant coelacanth 
populations that may imply unsampled extant coe-
lacanth diversity [44, 58]. However, the deep-marine 
ecology, restricted distribution, and low populations of 
extant Latimeria greatly restrict our ability to investi-
gate phenotypic disparity in the only extant actinistians 
[44]. Our analyses, which examine the largest mor-
phological dataset for sympatric coelacanth individu-
als available, demonstrate how phenotypic variability 
denoting probable species distinctions might be over-
looked even in sympatric populations of similarly-sized 
species (e.g., †Diplurus newarki and †D. enigmaticus). 
Thus, the depauperacy of coelacanths and the exten-
sive temporal ranges of several mawsoniid and latim-
eriid genera might be artifacts of unrecognized subtle 
species distinctions in this species-poor clade rather 
than reflecting the existence of exceptionally long-lived 
genera [18, 27]. In contrast to what might be expected 
based on the apparent low morphological disparity and 
genomic rates of change in the crown group, the spe-
cies richness of coelacanths and other depauperons 
may still largely be hidden in the geological past.
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