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Abstract 

Background: High levels of standing genomic variation in wide‑ranging marine species may enhance prospects 
for their long‑term persistence. Patterns of connectivity and adaptation in such species are often thought to be 
influenced by spatial factors, environmental heterogeneity, and oceanographic and geomorphological features. 
Population‑level studies that analytically integrate genome‑wide data with environmental information (i.e., seascape 
genomics) have the potential to inform the spatial distribution of adaptive diversity in wide‑ranging marine species, 
such as many marine mammals. We assessed genotype‑environment associations (GEAs) in 214 common dolphins 
(Delphinus delphis) along > 3000 km of the southern coast of Australia.

Results: We identified 747 candidate adaptive SNPs out of a filtered panel of 17,327 SNPs, and five putatively locally‑
adapted populations with high levels of standing genomic variation were disclosed along environmentally heteroge‑
neous coasts. Current velocity, sea surface temperature, salinity, and primary productivity were the key environmental 
variables associated with genomic variation. These environmental variables are in turn related to three main oceano‑
graphic phenomena that are likely affecting the dispersal of common dolphins: (1) regional oceanographic circula‑
tion, (2) localised and seasonal upwellings, and (3) seasonal on‑shelf circulation in protected coastal habitats. Signals 
of selection at exonic gene regions suggest that adaptive divergence is related to important metabolic traits.

Conclusion: To the best of our knowledge, this represents the first seascape genomics study for common dolphins 
(genus Delphinus). Information from the associations between populations and their environment can assist popula‑
tion management in forecasting the adaptive capacity of common dolphins to climate change and other anthropo‑
genic impacts.
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Background
Microevolutionary processes influenced by environ-
mental heterogeneity can create adaptive divergence 
among populations [1–3]. Marine ecosystems are 

environmentally heterogeneous, with coastal and pelagic 
species impacted by contrasting selective pressures that 
can lead to local adaptation (e.g., [3–5]). Local adapta-
tion occurs when an individual or group of individuals 
display higher fitness in a distinct spatial and temporal 
environment due to specific genetic variants [6–8]. Nat-
ural selection acts on both new mutations and standing 
genetic variation, with most adaptations involving multi-
ple loci and genomic regions [9, 10]. In marine environ-
ments, understanding the influence of geomorphological 
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and oceanographic features, as well as anthropogenic 
pressures on genomic variation, enhances our ability to 
refine knowledge about population structure and rapid 
evolution [11, 12], including for widespread species with 
high dispersal potential.

Genomic data has improved our understanding of 
macro- and microevolutionary processes, providing 
greater power and accuracy to detect large scale molecu-
lar adaptations, as well as population structure, gene flow 
and adaptive divergence between populations [13–15]. In 
toothed whales (Odontoceti), most studies of adaptations 
using genomic markers have focused on a macroevolu-
tionary perspective, while studies investigating ecologi-
cal specialisation on a microevolutionary level have been 
documented only for a few species. This includes ecotype 
adaptations of killer whales (Orcinus orca [16]), spinner 
dolphins (Stenella longirostris [17]), finless porpoises 
(Neophocaena phocaenoides [18, 19]), and bottlenose 
dolphins (Tursiops aduncus [20], and T. truncatus [21]). 
Despite these examples, population-level studies of 
microevolutionary processes remain highly under docu-
mented in Odontocetes, specifically in small cetaceans. 
In particular, little is known about the adaptive resilience 
of small cetaceans to local or regional environmental 
changes and to future climatic scenarios. The lack of such 
studies constrains our capacity to provide information 
for conservation and management, as well as clarifying 
important aspects of a species’ biology.

The common dolphin (Delphinus delphis) is a wide-
spread small cetacean that inhabits temperate, subtropi-
cal and some tropical waters around the world [22–24]. 
Their broad distribution suggests that several habitats 
are suitable for this species (e.g., [25, 26]). In Australia, 
common dolphins range from embayments and gulf 
waters to coastal, shelf and pelagic waters [26–28]. From 
a neutral genomic perspective, the species in Australa-
sia displays a hierarchical metapopulation structure and 
fine-scale population sub-structuring [29]. Although 
common dolphins exhibit high potential for dispersal, 
prey distribution has been suggested as a main driver 
for their movements [27, 30, 31]. In Australasian waters, 
they mainly hunt and feed upon schooling fish such as 
jack mackerel (Trachurus declivis, T.  s. murphyi and T. 
novaezelandiae), blue mackerel (Scomber australasicus), 
sardines (Sardina sagax) and anchovies (Engraulis aus-
tralis) [32, 33]. The ranges of common dolphin popu-
lations seem to be influenced by the distribution and 
abundance of their prey, and often coincide with oceano-
graphic circulation, areas of high primary productivity, 
and regions of high salinity and low sea surface tempera-
ture interfaces [27, 31, 34]. This suggests that oceano-
graphic features and oceanic circulation patterns could 
be shaping dispersal of common dolphins, as described 

for other Australian marine taxa (e.g., [35–37]). How-
ever, associations between environmental variables and 
genetic populations of common dolphin have only been 
described at broad geographical scales between different 
oceans [34], and the impact of regional oceanographic 
features is yet to be revealed. Common dolphins in south-
ern Australia are subject to various anthropogenic stress-
ors, such as interactions and mortalities in fisheries (e.g., 
[28, 38, 39]), and climatic change (e.g., [40, 41]), both of 
which can lead to negative health outcomes and potential 
declines of populations (e.g., [42, 43]). The widespread 
distribution of common dolphins in southern Australia, 
where marine environmental gradients and discontinui-
ties are observed, provides an excellent opportunity to 
investigate microevolutionary processes and adaptive 
divergence in a highly-mobile marine species.

The temperate waters of southern Australia harbour 
productive habitats for common dolphins (e.g., [31, 
38, 44]). Australia’s southern zonal coastal boundary 
stretches for > 3000 km, with high species endemism [45]. 
The geographic discontinuity along the large extent of 
the southern coastal and shelf waters is mainly charac-
terised by: (1) geological features such as > 400 canyons, 
one bight of > 1000  km, two large inverse estuaries, and 
a shallow strait; and (2) oceanographic features such as 
complexly variable bathymetry, strong currents, presence 
of seasonal upwellings, and gradients in current veloc-
ity, salinity and temperature (e.g., [46–48]). These fea-
tures, which vary from west to east, have been reported 
to influence historical genetic and genomic subdivision of 
invertebrate and fish species (e.g., Nerita spp. and Sipho-
naria spp. [49], Chlorophyta spp., Phaeophyta spp. and 
Rhodophyta spp. [50], and Catomerus polymerus [51]). 
Oceanographic and geological characteristics also impact 
different plankton biomasses (e.g., [52]), which small 
pelagic fish feed upon [46]. In turn, restrictions in the 
distribution of these primary producers and consumers 
may indirectly impact the genetic variation and adaptive 
potential of large marine predators, including common 
dolphins, which feed upon small pelagic species across 
the region.

Seascape genetic/genomics assessments combining 
genotype and environment associations in marine sys-
tems, have the potential to clarify the relative influence 
of environment and space on genomic variation [3, 53, 
54]. Previous studies on population genetic structure of 
common dolphins in southern Australia based on neutral 
markers (e.g., mtDNA, microsatellites) [28, 31] and puta-
tively neutral SNPs [29] have hypothesised that common 
dolphin populations are associated with environmental 
gradients. For other marine species, seascape genomic/
genetic analyses have suggested that adaptive population 
structure may be driven by environmental gradients of 
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bathymetry, temperature, oxygen, and salinity (e.g., [53, 
55]), while for common dolphins, associations with tem-
perature and chlorophyll have been proposed at the scale 
of oceanic basins [34].

In this seascape genomics study, genome-wide and 
environmental data were used to identify loci under 
selection, and to assess putatively adaptive population 
structure and diversity along southern Australia. We 
hypothesised that the continuous distribution of com-
mon dolphins in the highly heterogeneous coast of 
southern Australia influences the genomic variation of 
the species across different bioregions, leading to adap-
tive divergence among populations associated with geo-
logical and oceanographic features. Findings here can 
inform about the number and distribution of common 
dolphin populations and assist with the conservation and 
management of the species across the region, where it is 
subject to fisheries interactions, and other anthropogenic 
impacts such as pollution and climate change (e.g., [38, 
56]).

Results
Population genomic dataset
A total of 234 biopsy samples of common dolphins were 
used and sequenced across four Illumina HiSeq 2500 
lanes, producing 400 million filtered sequence reads. 
After filtering using stringent criteria (detailed in Addi-
tional file 1: Table S1 and [29]), we obtained a high-res-
olution dataset of 17,875 filtered SNPs with 1% average 
missing data per locus. Low-quality individuals, replicates 
and close relatives (|R|≥ 0.5) were removed, resulting in a 
dataset of 214 individuals for analyses. This dataset was 
then filtered for Minor Allele Count (MAC) < 3, resulting 
in a final dataset of 17,327 SNPs (Fig. 1).

Genotype‑environment associations
A total of six significant MEMs (α < 0.01) were retained 
and used as spatial variables. Out of 24 environmental 
variables initially included, five were selected after test-
ing pairwise correlation and multicollinearity (|r|> 0.7 
and VIF ≥ 3) (Additional file  1: Fig. S1). The retained 

Fig. 1 Study area in southern Australia showing the geolocations of 234 common dolphins (D. delphis) biopsy sampled for the genomic analyses. 
*Acronyms: Albany (ALB); Esperance (ESP); Great Australian Bight (GAB); shelf waters, Spencer Gulf (SG); Gulf St Vincent (GSV); Robe (ROB); Portland 
(PORT); Melbourne (MEL); and East Wilsons Promontory (EWP); Kangaroo Island (KI)
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variables were salinity maximum, sea surface tem-
perature minimum, primary productivity maximum, 
and current velocity maximum and range, with each 

environmental variable showing a marked gradi-
ent along southern Australia’s coast and shelf waters 
(Fig. 2a–e).

Fig. 2 Environmental variables that were retained as significant for the Genotype‑ Environment and Redundancy Canonical Analyses for southern 
Australian common dolphins (D. delphis). A Sea surface temperature minimum, B Primary productivity maximum, C Current velocity range, D 
Current velocity maximum, and E Salinity maximum. *Acronyms as in Fig. 1
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The overall RDA model was significant (p = 0.001), 
with the spatial variables explaining 4.9% of the varia-
tion of the full model, while the genotype dataset and 
the environmental variables explained 3.5% of the vari-
ation. Each of the five retained environmental variables 
were significant (p = 0.001) (Additional file  1: Table  S3). 
A total of 747 SNPs were retained as candidate adaptive 
markers. The first component explained 32% of the con-
strained variance, while the second component explained 
20% of the constrained variance. The RDA biplot demon-
strates variation in the genomic response to the five envi-
ronmental variables among sampling locations (Fig.  3). 
Changes in primary productivity, sea surface tempera-
ture and salinity explained most of the genomic diver-
gence of common dolphins from the Great Australian 
Bight (GAB), Spencer Gulf (SG), Robe (ROB), Portland 
(PORT), Melbourne (MEL), East Wilsons Promontory 
(EWP) and Gulf St Vincent (GSV), with the latter two 
impacted primarily by higher salinity. In contrast, cur-
rent velocity variables were strongly associated with the 
genomic differentiation of common dolphins between 
the two geographically close sites of Albany (ALB) and 
Esperance (ESP), Western Australia.

Adaptive population genomic structure and diversity
The inferred levels of putatively adaptive genome-
wide diversity were relatively high for all sites  (HE 
0.369–0.405;  HO 0.361–0.402) compared to the neutral 

genomic diversity  (HE 0.160–0.181;  HO 0.154–0.175) 
previously reported [29] (Table 1).

Multiple analyses (described below) using the adap-
tive dataset indicated the presence of four to five local 
putative populations, which were supported by the 
AIC test (Additional file  1: Fig. S2): (1) Albany (ALB), 
(2) Esperance (ESP), (3) Continental shelf sites (GAB, 
SG, ROB, PORT and MEL), (4) Gulf St Vincent (GSV), 
and (5) East Wilsons Promontory (EWP). Specifically, 
Admixture analysis revealed up to five putatively adap-
tive populations, with a separation between ALB and 
ESP, GSV, and EWP, compared to considerable admix-
ture among the other sites (Fig. 4; Additional file 1: Fig. 
S3a–f ). PCA results mostly supported four popula-
tions, showing in the first two axes only a subtle sep-
aration between EWP, GSV sites and [ALB with ESP], 
with admixed individuals from ALB, ESP and the con-
tinental shelf sites clustering in the middle of the two 
axes, while the third axis show support for a subtle sep-
aration between sites of ALB and ESP, with the latest 
showing a closer association with continental shelf sites 
(Additional file 1: Fig. S4a–c).

Fixation indices indicated low to moderate  (FST 0.001 
to 0.117) genomic differentiation between sampling 
locations based on the putatively adaptive dataset, with 
the majority significant and higher than observed with 
the putatively neutral dataset [29] (see Additional file 1: 
Fig. S5; Table  S4). The greater  FST differentiation was 

Fig. 3 Redundancy Canonical Analysis (RDA) displaying the influence 
of five environmental variables on individual genomic variation 
of common dolphins (D. delphis) from southern Australia. Legend 
displays sampling sites from west to east, and colours correspond to 
where common dolphins were sampled. *Acronyms as in Fig. 1

Table 1 Measures of genomic diversity by sampling site 
based on 747 putatively adaptive SNPs (this study), and 14,799 
putatively neutral SNPs (Barceló et al., 2021) from southern 
Australian common dolphins (Delphinus delphis)

Observed heterozygosity  (HO), expected heterozygosity  (HE) and number of 
samples used after filtering adaptive dataset (N). *Acronyms: Albany (ALB); 
Esperance (ESP); Great Australian Bight (GAB); shelf waters, Spencer Gulf (SG); 
Gulf St Vincent (GSV); Robe (ROB); Portland (PORT); Melbourne (MEL); and East, 
Wilsons Promontory (EWP)

Italics show the overall total and standard deviation across sampling sites

Site N Neutral Adaptive

Ho HE Ho HE

ALB 15 0.167 0.166 0.399 0.400

ESP 18 0.171 0.172 0.401 0.403

GAB 22 0.170 0.176 0.399 0.416

SG 32 0.172 0.172 0.419 0.419

GSV 28 0.154 0.160 0.380 0.387

ROB 31 0.172 0.175 0.404 0.413

PORT 32 0.169 0.175 0.406 0.417

MEL 16 0.169 0.177 0.395 0.413

EWP 20 0.175 0.181 0.388 0.406

Total average 0.169 0.173 0.399 0.408

Total SD 0.006 0.006 0.011 0.010
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between GSV and EWP compared to the western sites 
[ALB and ESP], with the lowest  FST values showcasing 
a gradient along southern Australian sites on the conti-
nental shelf.

Functional enrichment and annotation
A total of 1871 SNPs, from the full dataset of 17,327 
SNPs (> 10%), scored BLAST hits to the publicly available 
cetacean nucleotide and non-redundant protein data-
bases (NCBI). Of the 747 potentially adaptive SNPs, 148 
were annotated (~ 19%). Functional enrichment analysis 
identified 22 GO terms over-represented in the putative 
adaptive loci (Additional file 1: Table S5). These over-rep-
resented GO terms belong mostly to biological processes, 
with 26 adaptive candidate SNPs in 15 known genes and 
associated to multiple pathways (Fig. 5).

These 26 SNPs were further investigated, with three 
of them occurring in exonic regions (Figs. 5; Additional 
file  1: Fig. S6; Table  S6). These SNPs corresponded to 
candidate genes MAN2B1, which is related to breaking 
complex sugar molecules in carbohydrate metabolism 

Fig. 4 Population genomic structure analysis using Admixture based 
on 747 putatively adaptive SNPs for southern Australian common 
dolphins (D. delphis), labelled by sampling site. The results depict 
levels of admixture for each individual sample, grouping them into 
five adaptive genomic clusters (K = 5). Each sample is represented 
by one vertical line and is colour‑coded based on the membership 
probability to one of the identified locally adapted populations. 
*Acronyms as in Fig. 1

Fig. 5 Sankey diagram showing the 15 of the 26 candidate genes disclosed by the functional enrichment analysis, their interlinkage pathways, and 
gene location from this study. Colours of each gene corresponds to the function pathway and colours of gene location are only displayed for visual 
representation
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[57–59], and ZFP57 which is related to early embryonic 
methylation that is potentially altered by nutrients in 
one’s diet [60–62]. These SNPs were most strongly asso-
ciated with primary productivity variation in the RDA. 
The third SNP in an exonic region correspond to can-
didate gene NR2F6 (also known as CoupTFII), which is 
related to the regulation of adipogenesis, glucose, home-
ostasis and energy metabolism [63–65], and was cor-
related with the salinity gradient in the RDA. Although 
the correlations between candidate SNPs and the envi-
ronmental variables were generally low  (r2 < 0.5), the cor-
relations were still significant (Fisher’s p-value < 0.05), 
and considerable variation in allele frequencies of these 
candidate SNPs were observed across the seascape 
(Additional file  1: Fig. S7). Other candidate SNPs were 
located in promoters (LZTS1, KRBA1), intronic regions 
(PKD1L2, P3H2, SYT6, ERC2, LEF1, ABCB8, RTEL1, 
TLN2, MTCL1, STX7 and CFAP54), and intergenic parts 
of putative genes (LZTS1, EBF2, ELL, IGFBP7, KRBA1, 
NKD2, TAS1R2, MTCL1 and KCTD16).

Discussion
Species and populations exhibiting high genomic varia-
tion have enhanced prospects for long-term persistence 
[66–68]. However, highly diverse populations inhabit-
ing multiple environments may be subject to disparate 
selective pressures, which in turn can result in adap-
tation to particular habitats [2, 3, 69]. Marine preda-
tors are expected to be highly impacted by complex and 
indirect ecological interactions between their prey and 
habitats (e.g., [70]). For high dispersal marine species, 
such as common dolphins, little is known about the spa-
tial distribution of adaptive diversity and its association 
with spatial connectivity and population subdivision. 
Here, a seascape genomics approach was used to assess 
the influence of environmental heterogeneity in shap-
ing putatively adaptive divergence in common dolphins 
from southern Australia. Our analyses identified over 
700 SNPs putatively under selection that delineated up to 
five populations across the region. The seascape genom-
ics approach revealed four key environmental variables 
(sea surface temperature, primary productivity, current 
velocity, and salinity) influencing patterns of genomic 
variation. This genomic signal appears associated with 
three different oceanographic phenomena in southern 
Australian coastal and shelf waters: (1) oceanographic 
circulation patterns in the western region and related 
differences in current velocity; (2) upwelling hotspots 
across the central shelf region influencing fluctuations of 
primary productivity and sea surface temperatures; and 
(3) protected coastal environments in the central and 

eastern bioregions characterised by marked variations in 
salinity and seasonal circulation patterns.

Candidate adaptive genomic variation in southern 
Australian common dolphins
Genomic variation within populations is impacted by 
demographic history, but also through ongoing selec-
tive pressures that will promote or restrict the disper-
sal of individuals, which may in turn be reinforced by 
social structure and behaviour [71, 72]. The comparison 
between candidate adaptive markers (this study) and 
previously reported neutral markers [29], showed that 
estimates of genomic variation and differentiation were 
higher for the adaptive markers. More complex popu-
lation structure was also revealed, with five supported 
populations suggested here using the candidate adap-
tive markers, compared with just two supported for the 
neutral dataset [29]. While neutral and adaptive genetic 
signals both provide useful information about population 
structure, they arise through different evolutionary forces 
[68, 73], and can inform different aspects of conservation 
and management requirements [74–76], as discussed 
below.

Understanding the pressures that impact marine pop-
ulations is critical for guiding their management [55]. 
Common dolphins are a widespread species thought to 
have colonised different coasts and pelagic habitats off 
Australia during the Pleistocene [77]. During that period, 
fluctuations in primary productivity may have opened 
new niches and promoted colonisation of the region by 
this species [78–80]. However, contemporary environ-
mental pressures may also influence local adaptation of 
marine populations [66, 81]. This is relevant for common 
dolphins in southern Australia, which experience ongo-
ing impacts from anthropogenic activities, particularly 
by-catch in multiple fisheries (e.g., [38, 82, 83]). Common 
dolphins exhibit two patterns relevant for their man-
agement and conservation. From a neutral perspective, 
based on signals from genomic regions mostly shaped 
by genetic drift and migration, genetic connectivity is 
observed over relatively long geographical distances [29]. 
From an adaptive perspective, signatures of putative 
selection supporting local adaptation to some embay-
ment environments, which corroborates field observa-
tions of site fidelity and year-round residency in these 
areas (e.g., [44, 84, 85]). Neutral and adaptive loci can 
disclose a different number of populations for manage-
ment and conservation [76, 86]. For common dolphins in 
southern Australia, adaptive loci supported the hypothe-
sis of putative adaptation to local environments or biore-
gions that may provide long-term evolutionary potential 
despite the occurrence of gene flow at the metapopula-
tion level, as previously found with neutral loci [29]. Each 
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local habitat, or bioregion, exhibits different environmen-
tal gradients, such as temperature, current velocity, and 
salinity, which could be impacting common dolphins and 
their prey distribution in southern Australia. Differentia-
tion between locally adapted populations despite meta-
population gene flow, has been previously described for 
other marine taxa along southern Australia (e.g., Hali-
otis [36, 37], and Nerita [87]), and in another delphinid 
(e.g., T. aduncus [20]). Effects of climate change may dif-
fer between adapted populations, with local populations 
exhibiting low adaptive diversity, such as those in coastal 
protected environments or embayments, perhaps more 
vulnerable to such effects (e.g., [20, 40, 88]). Thus, neutral 
and adaptive variation are both relevant to conservation 
for maintaining high standing genetic variation and evo-
lutionary potential across the southern Australia’s com-
mon dolphin metapopulation.

Environmental drivers of adaptive differentiation 
in southern Australian common dolphins
Adaptive differentiation can be driven by various selec-
tive pressures. In marine systems, oceanographic fea-
tures, such as bathymetry, currents, primary productivity, 
salinity, and temperature may exert selective pressures 
[4, 55, 89]. Environmental gradients and discontinuities 
could be creating soft barriers, and in turn, lead to adap-
tive divergence among marine populations or bioregions 
(e.g., [4, 36, 90]). Population differentiation in southern 
Australian common dolphins has been generally asso-
ciated with their social structure, areas of high primary 
productivity, as well as abundance and movements of 
their prey (e.g., [31, 44, 85]), which mainly exhibit pas-
sive dispersal during their larvae stage (e.g., [91–93]). 
Although using a small representation of the genome in 
the current study led to a significant, albeit small, asso-
ciation between genomic variation with key environmen-
tal variables, it does not necessarily fully elucidate the 
complex scenarios that occur in the marine system. The 
assessment of common dolphin populations in southern 
Australia, thus requires a general ecological understand-
ing of this heterogeneous marine system.

At a global scale, a seascape genetics study of common 
dolphins based on neutral microsatellite markers found 
evidence for chlorophyll a and sea surface temperature 
variation linked to major population boundaries [34]. 
Robust analyses in our study based on a large SNP data-
set disclosed that common dolphin genomic variation 
was associated not just with sea surface temperature, but 
also current velocity, primary productivity (which is gen-
erally positively correlated with chlorophyll a), and salin-
ity. Our findings suggest that different environmental 
variables may be acting on common dolphins’ genomic 
variation in different bioregions, playing major roles in 

the differentiation of their populations. The ocean circu-
lation in the region, which influences seasonal differences 
in primary productivity and sea surface temperature, 
likely results in different levels of plankton biomass (e.g., 
[52]), and in turn mediates the abundance and distribu-
tion of the dolphins’ prey.

Ocean circulation off southern Western Australia
The western and southern coasts of Western Australia are 
characterised by the Leeuwin current, which originates 
in the warm Indo-Pacific Ocean, moving south along the 
western coast of Australia, and into the southern coast 
off Cape Leeuwin [94–96]. The warm waters that enter 
southern Australia, flowing from west to east, create dis-
tinct patterns of temperature, primary productivity, and 
current velocity along the continental shelf [97, 98]. In 
southern Western Australia, common dolphins from the 
two geographically close sites of Albany and Esperance 
(~ 300  km apart) were found to be differentiated based 
on the adaptive SNP dataset, and this distinction seems 
to be mainly driven by oceanographic currents, particu-
larly changes in current velocity in the region (Figs.  2c, 
d; 3). This result is consistent with a previous microsatel-
lite study that suggested differentiation between dolphins 
of these two sites [31], although this separation was not 
disclosed by neutral SNP study [29]. A recent GEA study 
in a closely related species, the Indo-Pacific bottlenose 
dolphin (T. aduncus), did not disclose similar separation 
between localities in the southern coast of Western Aus-
tralia [20]. This is potentially due to difference in habitat 
use between the two species, with bottlenose being gen-
erally found closer to shore as compared to common dol-
phins that have a more offshore distribution.

In the western region of southern Australia, the Leeu-
win current velocity rapidly declines due to geomor-
phological formations at the ocean floor, such as the 
presence of canyons and the Recherche archipelago [93, 
96, 99]. Models of larval dispersal in some fish species 
have shown that individuals move along the Leeuwin 
current, but separate fish aggregations form between 
Albany and Esperance [100]. Circulation and geomor-
phological differences characterise each site; Albany with 
strong mixing of waters outside the embayment, whereas 
off Esperance waters are more protected because of the 
archipelago’s presence [101, 102]. Common dolphins are 
known to optimise their energy requirements by having 
different hunting strategies and preferences for target-
ing diverse prey species between different sites and sea-
sons [30, 103, 104]. Thus, common dolphins that inhabit 
Albany and Esperance could be targeting different fish 
aggregations, which may lead to differential habitat use.

Interpretation of functional implications between SNPs 
and their environment needs to be made with caution, 
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especially in marine systems as it is difficult to elucidate 
all possible oceanographic and demographic scenarios 
[105, 106]. However, adaptive genomic variation of com-
mon dolphins between Albany and eastern sites was 
evident in SNPs of the candidate genes EBF2, LEF1 and 
KCTD16. Variation at these genes correlated with cur-
rent velocity and primary productivity. These genes are 
known to be linked to pathways of adipogenesis, homeo-
stasis, thermogenesis and osmoregulation, which pro-
mote digestion, absorption of carbohydrates, hypoxic 
conditions, energy conversion, as well as differentiation 
of brown adipocytes (e.g., [107–109]).

Southern Australia’s continental shelf and its upwellings
The Leeuwin current continues into southern Australia 
as the Great Australian Bight current, which is character-
ised by slower flow in an eastward direction following the 
break of the continental shelf [95, 97, 110]. The sea floor 
formation of the southern continental shelf of Australia 
creates a basin known as the Great Australian Bight, 
which extends several nautical miles from the coast into 
the continental shelf break [111–113]. While the warm 
currents tend to follow the continental shelf, there is 
also a counter-current of cold water, known as the Flin-
ders current, which typically remains off the continental 
shelf break [97]. During the austral summer, anticyclonic 
weather favours the replacement of the warm currents by 
the cold and productive Flinders current, forming coastal 
upwellings over the continental shelf [46, 47, 95]. The 
GEA analysis highlighted the influence of these upwell-
ings as demonstrated by the importance of maximum 
primary productivity and minimum sea surface temper-
ature in shaping the adaptive genomic differentiation of 
common dolphins. This was particularly reflected in sam-
ples from regions of the Great Australian Bight, mouth 
of Spencer Gulf, Robe, Portland, and Melbourne, which 
clustered together, a pattern also disclosed in the PCA 
and Admixture analyses.

Differences in primary productivity and sea surface 
temperatures have been considered the main forces that 
drive seasonal upwellings in southern Australia [46, 100, 
112]. There are two types of upwelling centres along 
southern Australia. Large upwellings are represented 
by the Bonney upwelling located between Robe, South 
Australia, and Portland, Victoria, and the Tasmanian 
upwelling located off western Tasmania. There are also 
smaller upwelling centres that do not follow the classical 
Eckman model formation, such as the Eyre Peninsula and 
the Kangaroo Island upwellings [99, 110, 112]. While the 
smaller upwellings could mainly have an impact upon the 
spawning of fish species, such as sardines and anchovies 
[91], the larger upwelling centres attract a high density 

of predators, such as dolphins, whales, seals and sharks 
feeding upon large biomasses of krill and pelagic fish 
(e.g., [114–116]).

Common dolphins in open and unprotected conti-
nental shelf waters (i.e. Great Australian Bight, mouth of 
Spencer Gulf, Robe, Portland and Melbourne) presented 
similar Minor Allele Frequency (MAFs) in the SNPs 
of candidate genes ERC2 (intronic), and MAN2B1 and 
ZFP57 (exonic) (SNPs correlated to either primary pro-
ductivity or temperature), compared to other localities 
(Additional file  1: Figs. S6 and S7). In other taxa, these 
genes have been associated with heat stress metabolism, 
the breaking of complex sugar molecules, and the regula-
tion of fatty acids [59, 117, 118].

Protected coastal habitats
The geomorphology of southern Australia includes sev-
eral embayment and protected areas [94, 96]. Some of 
these protected embayments, such as Gulf St Vincent 
in South Australia, and Port Philip Bay in Victoria, have 
been previously described as important year-round habi-
tats for common dolphins [44, 84, 103]. A previous study 
using a neutral genomic dataset suggested some differ-
entiation between dolphins from Gulf of St Vincent and 
other areas [29]. In our study, this differentiation was fur-
ther informed by the GEA analysis, which disclosed that 
the genomic variation of common dolphins in sheltered 
waters of Gulf St Vincent and East Wilsons Promontory 
is apparently driven by variations in salinity, primary 
productivity and sea surface temperatures. The Gulf St 
Vincent is a hyper-saline inverse estuary (i.e., salinity 
increases with distance to the mouth, and evaporation 
exceeds inflow circulation), with seasonal circulations 
that create differences in primary productivity and tem-
peratures [96, 119, 120]. Similarly, Wilsons Promontory 
is a protected area described as a unique biogeographic 
region between the southern and eastern Australian 
currents, with seasonal circulation associated with dif-
ferences in temperature that promotes the formation of 
seasonal fish assemblages [49, 121, 122].

In southern Australia, common dolphins mainly feed 
upon sardines (S. sagax), anchovies (E. australis), and 
mackerel (Trachurus spp.) [33, 123], which are prey spe-
cies with high energy density. However, for some presum-
ably resident populations in Port Phillip Bay and Hauraki 
Gulf, New Zealand, it has been suggested that common 
dolphins may change their target species based on sea-
sonal availability [30, 103]. Bottlenose dolphins that 
exhibit strong residency in embayment habitats in south-
ern Australia have also shown genomic differentiation 
associated with salinity, current velocity and temperature 
(see Pratt et al. [20] for details), variables than influence 
temporal fish composition in the region (e.g., [119, 120]), 
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and could create indirect discontinuities in food avail-
ability [20]. For bottlenose dolphins, it was hypothesised, 
based on genes found to be under potential selection, 
that some physiological adaptations could be occurring 
at a population level, especially in embayment habitats 
[20]. For southern Australian common dolphins from 
coastal protected habitats, especially those from Gulf of 
St Vincent, there were significant genomic differences 
by RDA and enrichment analysis in the MAF of SNPs in 
genes STX7 and IGFBP7 (correlated to salinity), which 
are genes involved in pathways of osmoregulation and 
other physiological adaptations (e.g., [124–126]). Macro-
evolutionary studies of odontocetes have suggested that 
adaptative divergence mostly occurred during cycles of 
high productivity [78–80]. This was observed, for exam-
ple, in members of the STX family genes which are posi-
tively selected in the macroevolution of marine mammals 
(e.g., [16, 127, 128]).

In southern Australian embayments, seasonal changes 
in salinity and temperature are associated with changes 
in the composition of fish assemblages (e.g., [122, 129]). 
Genomic variation in common dolphins inhabiting 
embayment areas, such as Gulf St Vincent, could relate to 
mechanisms for coping with high salinities, while allow-
ing them to remain locally resident year-round by alter-
nating feeding upon different prey species. Although the 
evidence reported here is based on a small representa-
tion of the genome (less than 2% of the dolphin genome 
with a 99% alignment to T. aduncus), it is expected that 
future studies using species-specific whole genomes, will 
expand and report on many other gene regions and path-
ways likely to be under selection in these common dol-
phin populations.

Implications for conservation under future climatic 
scenarios
This study points to environmental variables that may be 
influencing putatively adaptive populations of common 
dolphins across southern Australia. With rapid and ongo-
ing climatic change and other anthropogenic pressures 
impacting on marine species [3, 11, 130], it is essential to 
understand which environmental factors shape genomic 
variation to identify locally adapted populations relevant 
for conservation and management. Models predicting 
the impact of climate change in marine systems have pro-
vided evidence that differences in circulation patterns 
will likely lead to warmer environments [131–133]. For 
cetaceans, two possible scenarios have been proposed. 
One scenario suggests that changes in ocean circulation, 
wind patterns and currents could enhance upwelling 
areas, with large predators such as common dolphins 
likely benefiting from these changes (e.g., [41, 134, 135]). 
In contrast, another scenario suggests that warmer sea 

surface temperatures would alter community dynamics 
and increase exposure of populations to various patho-
gens (e.g., [40–42]). In this second scenario, prey abun-
dance and distribution could be greatly impacted by 
effects on plankton biomasses (e.g., [136, 137]), which 
could lead to disease outbreaks, prey depletion and popu-
lation declines for cetaceans and other marine predators.

Potential effects suggested in both scenarios could 
impact southern Australian common dolphins. The first 
scenario is perhaps most likely for common dolphin 
populations inhabiting sites where connectivity persists 
over thousands of kilometres due to seasonal aggrega-
tions in the upwelling areas (e.g., [41, 135]). Southern 
Australian common dolphins could enhance the move-
ment of nutrients to different habitats and trophic lev-
els (e.g., [138, 139]). This movement of nutrients due to 
climate change could affect the timing and magnitude 
of the upwellings, which could deplete some areas and 
eutrophicate others (e.g., [136]), impacting common dol-
phins and other cetacean species that feed upon high 
density prey biomasses [137, 139, 140]. In contrast, the 
second scenario could potentially be more relevant for 
common dolphins that live in protected habitats in which 
extreme climatic events, such as marine heatwaves, could 
lead to high mortalities of prey species (e.g., [141]) and 
alteration of spawning times (e.g., [92, 142]). Moreover, 
changes in temperature and nutrients of waters masses 
could lead to low abundance and redistribution of prey 
species (e.g., [143, 144]). For dolphin species that inhabit 
protected environments, epizootic events often coincide 
with these types of extreme climatic stressors, leading 
to negative impacts on population health and reproduc-
tion, and occasionally large morbidity and mortality 
events (e.g., [40, 43, 145]). Moreover, common dolphins 
in embayment areas such as Gulf St Vincent and Spencer 
Gulf have been subjected to fisheries interactions for long 
periods of time [28, 38, 56], and extreme climatic events 
leading to lower food availability may further compound 
negative impacts (e.g., [40, 43, 140]). The dynamics of 
marine ecosystems are extremely complex, and future cli-
matic changes may lead to indirect effects that need to be 
contemplated in future conservation planning [46, 144].

As a near top predator, common dolphins provide 
important ecosystem services to the marine environ-
ment [138, 139], and if further anthropogenic or cli-
matic impacts were to occur, these could lead to changes 
in food-webs potentially causing the eutrophication 
of ecosystems (e.g., [40, 146, 147]). Adaptation to het-
erogeneous environments in species with high genomic 
diversity can promote population resilience to climatic 
changes [72]. When developing policies and management 
decisions, it is important to incorporate information 
from both neutral and adaptive markers to ensure the 
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persistence of high standing genomic variation in marine 
populations [2, 69, 148]. Currently, these putatively diver-
gent dolphin populations are being managed according 
to the management stocks of their prey (e.g., [149]), with 
no specific consideration of common dolphin genetic or 
genomic differentiation. Results of this study disclosed 
five putatively adaptive common dolphin populations in 
southern Australia that need to be considered as prior-
ity areas for conservation and management, taking into 
account the potential cumulative impacts of fisheries 
(e.g., [38]) and other stressors on each local population, 
as well as across its Australasian metapopulations [29]. 
In line with Funk et  al.’s [86] framework for the deline-
ation of conservation units, we suggest that common 
dolphin management units should incorporate results 
of both neutral [29] and adaptive population structure. 
Integrating these results can lead to management units 
that enhance functional corridors, and provide long-
term, high standing genetic variation to the populations. 
We also recommend that future common dolphin stud-
ies should implement this framework as already used 
for other marine taxa (e.g., Parastichopus [12], Microtus 
[150], Carcharhinus [151]). Management units from areas 
such as Gulf of St Vincent should be prioritised, given it 
continues to be impacted by human activities, exhibits 
the least amount of migration compared to adjacent sites 
[29], and is an area where common dolphins show puta-
tive adaptation to the semi-enclosed embayment.

Conclusion
Our study suggest that conservation and policy efforts 
towards common dolphins should preserve diversity as 
well as connectivity, and take into consideration cumu-
lative impacts on the putatively adaptive populations 
as a proxy of evolutionary potential. The GEA analysis 
indicated that common dolphin genomic variation is 
impacted by four key environmental variables, which in 
turn are likely related to three oceanographic phenom-
ena that characterise this broad ocean region. Genomic 
variation in dolphins off the southern coast of Western 
Australia was associated with current velocity, while 
genomic differentiation of common dolphins from sites 
along the continental shelf break were associated with 
primary productivity and sea surface temperature. The 
latter may relate to major upwelling centres, which could 
be promoting areas of seasonal aggregation. In contrast, 
genomic differentiation of common dolphins from pro-
tected coastal habitats and embayments were associated 
mainly with fluctuations in salinity. These environmental 
variables present gradients and discontinuities, which 
may create soft barriers among the putative populations. 
Thus, it is recommended that neutral and adaptive vari-
ation should be considered for the management of these 

five putatively locally adaptive common dolphin popu-
lations, while allowing long-range gene flow to persist 
across their previously described Australasian metap-
opulation. Maintaining connectivity can promote long-
term high standing genomic variation, which in turn 
will enhance population viability under anthropogenic 
impacts, including unfavourable climatic events. Further-
more, this study represents the first seascape genomic 
assessment of common dolphins in a dynamic heteroge-
neous environment. The candidate genes described here 
may be useful for future comparative studies of common 
dolphins and potentially other delphinid species that 
share similar environments.

Methods
Sample collection and study area
Common dolphins were sampled across > 3000  km of 
southern Australian waters between 2002 and 2015, with 
locations allocated based on individual GPS data (Fig. 1). 
These sites encompass the distribution of this species 
along the oceanographic, environmental, and geologi-
cal discontinuities of southern Australia. Biopsy samples 
were collected from live individuals using a hand held 
biopsy pole [152] or remote biopsy gun (PAXARMS) 
[153]. Dependent calves were not sampled to avoid the 
inclusion of closely related individuals. Biopsy samples 
were preserved in 90% ethanol or in a 20% salt-saturated 
solution of dimethyl sulphoxide (DMSO) and stored 
frozen (− 80  °C) until laboratory analyses took place. A 
total of 234 biopsy samples were used for the genomic 
analyses.

Laboratory analyses and bioinformatics
DNA extractions from biopsy samples were performed 
using a salting-out protocol [154]. Quantity and quality 
controls of DNA were determined using a Qubit 2.0 fluo-
rometer (Life 178 Technologies), a Nanodrop spectro-
photometer (Thermo Scientific), and gel electrophoresis. 
Library preparation for the double digest restriction-site 
associated (ddRAD) was performed following the pro-
tocol of Peterson et  al. [155], and sequencing was done 
using an Illumina HiSeq 2500 platform producing single-
end, 100 bp reads, at the South Australian Health & Med-
ical Research Institute (SAHMRI).

Raw data quality was assessed, and demultiplexed using 
process_radtags, with STACKS v1.48 [156, 157], reads 
were trimmed by quality (only one error allowed) using 
TRIMMOMATIC [158], and then dDocent2.2.19 pipe-
line [159] was used to call the SNPs. The resulting loci 
were then filtered using VCFtools (see details in Addi-
tional file  1 and [29]). The quality-filtered ddRAD loci 
were then mapped against the genome of a closely related 
species, the Indo-Pacific bottlenose dolphin (T. aduncus) 
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from southern Australia [145] using Bowtie2 [160], due 
to the absence of a high-quality D. delphis genome. Gen-
otype errors were considered and filtered by the incor-
poration of 10 known replicate samples. To exclude 
potential field sample duplicates or closely related indi-
viduals in the dataset, relatedness between pairs of indi-
viduals was calculated by the triadic likelihood estimator 
(TrioML) in Coancestry v1.0.1.9, as this estimator pro-
vides the highest correlation with true values [161]. Then, 
following a simulation protocol of Attard et al. (see [162] 
for details of parameters), we determined a relatedness 
threshold (|R|> 0.5) to remove one individual per each 
pair of duplicates or closely related individuals, such as 
parent-offspring (detailed in Additional file 1: Table S1).

Selection of environmental variables and spatial data
Bathymetry, sea surface temperature, chlorophyll a, cur-
rent velocity, primary productivity, and salinity were 
selected as ecologically relevant environmental variables 
to test for associations with common dolphin genomic 
variation based on previous studies (e.g., [29, 31]). For 
each of the variables selected, the annual maximum, 
mean, minimum, and range values between the years 
2000 and 2014 were used, resulting in a total of 24 varia-
bles (Additional file 1: Table S2). The environmental data 
was downloaded from the database BioOracle at a reso-
lution of ~ 9.2  km, using the R package ‘sdmpredictors’ 
[163, 164] (see Additional file 1 for details).

To control for spatial autocorrelation, pairwise oceanic 
distances were calculated using the GPS coordinates of 
each individual and the R function viamaris available at 
https:// github. com/ pygmy perch/ melfuR. Pairwise oce-
anic distances were then transformed to Moran’s eigen-
vector maps (MEM) using the package ‘memgene’ with a 
forward selection procedure, 100 permutations, and an 
alpha value of 0.05 [165]. The selected MEMs were then 
used as the spatial variables for analyses.

To determine which environmental variables were 
significantly driving the population genomic differentia-
tion from the initial 24 environmental variables, stand-
ardisation was first implemented with the R package 
‘pysch’ [166], before excluding highly correlated variables 
(r > 0.7) [167–169] and those with a variance inflation 
factor (VIF) ≥ 3 [170]. We then used a forward selection 
criteria with the R package ‘vegan’ [171] to retain envi-
ronmental variables that explained a significant (p < 0.05) 
portion of the genomic variation [166, 172].

Genotype‑environment association
Loci putatively under selection were detected using 
a seascape genomics approach within an individual-
based genotype-environment association (GEA) frame-
work. This methodology allows the identification of 

associations between genetic and selected environmental 
variables across individuals, with multivariate analyses 
carried out in the R package ‘vegan’ [171] (see descrip-
tion and parameters of analysis below). The Redundancy 
Canonical Analysis (RDA) was chosen because it usually 
outperforms other GEA methodologies, such as uni-
variate analyses (e.g., Latent Factor Mixed Models), for 
detecting genomic markers associated with environmen-
tal variables, as it reduces the number of false-positives 
without compromising the detection of true-positive 
candidates (e.g., [173, 174]). A partial RDA was used to 
assess the effect of the selected environmental variables 
on the genomic diversity while controlling for the spatial 
pattern using the selected MEMs.

The significance of each environmental variable and 
axis (p < 0.05) was calculated using an Analysis of Vari-
ance (ANOVA) with 1000 permutations. Loci that scored 
greater than three standard deviations (± 3SD) from the 
mean locus scores were selected as candidates for each 
of the significant RDA axes. Selected axes explained a 
significant (p < 0.05) portion of the genomic variation, as 
previously suggested [172, 173]. Spearman’s correlations 
were then calculated between each of the candidate loci 
and the retained environmental variables to determine 
the most important environmental variable shaping allele 
frequencies of each locus.

Adaptive population diversity and structure
Genomic diversity of the candidate SNPs was assessed 
for each sampled site using GenoDive 2.0b27 [175]. Prin-
cipal Component Analysis (PCA), which is a model-free 
approach, was used to investigate population structure 
using the R package ‘Adegenet’ [176, 177]. The Akaike 
Information Criterion (AIC) was then used to determine 
the best-supported number of clusters in the dataset, 
using the snapclust.chooseK function, also in ‘Adegenet’ 
[178].

Population structure was further investigated using 
a Bayesian clustering approach that infers population 
stratification based on the estimated individual ancestries 
in Admixture v1.3.0 [179]. Although the candidate adap-
tive dataset likely violates Hardy–Weinberg assumptions 
of equilibrium [86], this analysis was used as a compari-
son to the results based on the putatively neutral dataset 
[29]. The maximum likelihood estimates were calculated 
by using the ancestry portion and the population allele 
frequency to assign the most likely number of K (i.e., 
populations) in the dataset, testing for K 1–9, and for 
modelling the probability of observed genotypes [180]. 
This was followed by cross validation with ten replicates 
for each of the K values.

https://github.com/pygmyperch/melfuR
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Adaptive genomic differentiation among sites was esti-
mated as pairwise  FST [181] using GenoDive 2.0b27. Sig-
nificance levels were assessed using 10,000 permutations, 
corrected by the B-Y method (FDR < 10%; [182]). Heat-
map plots of  FST were constructed with the R package 
‘ggplot2’ [183].

Functional enrichment analysis and annotation
A functional enrichment analysis was performed for the 
full annotated dataset of 17,327 SNPs as a background 
gene set, using the nucleotide and non-redundant pro-
tein NCBI databases for all available cetacean sequences 
[53, 184–186]. Based on the results of linkage disequilib-
rium (details in [29]), flanking sequences of 300 bp either 
side of each SNP were extracted, resulting in 601  bp 
sequences. Annotation was then performed using the 
alignment tool (BLAST) in the NCBI nucleotide and non-
redundant protein databases, with an e-value threshold 
of 1 ×   10−3. A Gene Ontology (GO) term enrichment 
analysis was also performed comparing the candidate loci 
to the full dataset (17,327 SNPs) using a Fisher’s exact test 
and a FDR cut-off of ≤ 5% [187]. The resulting GO terms 
related to a specific SNP in a candidate gene, were then 
further examined for its sequence position using snpEFF 
[188]. Each SNP was further assigned to a pathway and 
function using the Reactome [189] and UnitProtKB data-
bases, respectively (The UnitProt Consortium, 2018).
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