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Abstract 

Background: Inter-regional relationships between landscape factors and biological responses in natural conditions 
are important but difficult to predict because of the differences in each landscape context and local environment. To 
examine the inter-regional variability in relation to landscape factors and the biological response of an insect pest of 
rice, Stenotus rubrovittatus, we extrapolated a damage prediction model (the ‘original model’ of our previous study) 
for rice using land-use data. The ‘original model’ comprised as fixed factors the area of source habitat (i.e. pastures and 
graminoid-dominated fallow fields), soybean fields, and rice paddies within 300-m radii with research years as the 
random intercept. We hypothesized that the original model would be applicable to new regions, but the predictive 
accuracy would be reduced. We predicted that fitting a new extended model, adjusting the parameter coefficients 
of identical fixed factors of the ‘original model,’ and adding regional random intercepts would improve model perfor-
mance (the ‘extended model’). A field experiment was conducted in two regions that had a similar landscape context 
with the original region, each in a different year of four years in total. The proportion of rice damage and surrounding 
land use within a 300-m radius was investigated, and the data were applied to the models and the applicability and 
accuracy of the models were examined.

Results: When the ‘original model’ was assigned to the combined data from the original and extrapolated regions, 
the relationship between the observed and the predicted values was statistically significant, suggesting that there 
was an inter-regional common relationship. The relationship was not statistically significant if the model was applied 
only to the new regions. The extended model accuracy improved by 14% compared with the original model and was 
applicable for unknown data within the examined regions as demonstrated by three-fold cross validation.

Conclusions: These results imply that in this pest–crop system, there is likely to be a common inter-regional biologi-
cal response of arthropods because of landscape factors, although we need to consider local environmental factors. 
We should be able to apply such relationships to identify or prevent pest hazards by offering region-wide manage-
ment options.
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Background
Evaluation of the response of organisms to landscape fac-
tors is important for solving basic and applied problems, 
such as species conservation, prediction of the popula-
tion dynamics of organisms, and pest management [1–3]. 
The temporal and spatial effects of landscape factors on 
the biological responses of organisms vary from region 
to region (e.g. [4]). Previous studies have reported that 
the relationships between landscape factors and biologi-
cal responses depend on dispersal ability, local and inter-
habitat movement, population density, habitat related 
contexts (i.e. size, amount, heterogeneity, and fragmen-
tation), and associated responses of organisms [3]. Inter-
regional variations in landscape context, that is, the 
amount and spatial pattern of different land cover types 
surrounding a given site [5], is expected to cause changes 
in these relationships. However, there has been very lit-
tle examination of the extent of inter-regional varia-
tion in landscape factors, such as land use composition 
and configuration, and biological responses in similar 
environments.

Addressing this issue will be valuable in terms of 
applied ecology, because it offers the prospect of being 
able to extrapolate environmental hazards, such as the 
likelihood of pest damage, wildlife and vector-borne dis-
eases, and their management actions. Compared with 
natural and semi-natural landscapes which are highly 
diverse and contextually unique, agricultural landscapes, 
which cover 37% of the global land area [6], have rela-
tively simple plant and animal communities. Conven-
tionally managed fields are particularly environmentally 
homogenous because of the management style of local 
farmers in terms of mowing, cultivation, and agro-
chemical use. In agricultural landscapes, especially in 
intensively managed agricultural environments, compa-
rable responses of organisms to landscape factors may be 
observed even in different regions because of the simi-
larity of anthropogenic management. Discussions about 
extrapolation have been a major research focus in applied 
ecology [4]. However, few studies of species occurrence 
have discussed commonality across regions [7, 8], and 
more complex responses such as crop damage have not 
been tested using empirical data. Knowing whether there 
are inter-regional generalities in local ecosystem man-
agement that can be applied regionally may help us to 
develop recommendations for stakeholders for nature 
conservation and biological management policies.

Stenotus rubrovittatus is one of the most important 
rice pests in eastern Asian countries including Japan 
and South Korea [9, 10]. A predictive model of rice dam-
age from this insect (known as “pecky rice damage” 
on brown rice grains), using land use within an effec-
tive spatial scale was developed, and a hazard map was 

prepared based on the model [11]. This species seldom 
breeds in rice paddies [12] and the number of individu-
als of S. rubrovittatus invading rice paddy fields is lim-
ited by the source habitat of the surrounding landscape. 
This model predicts rice damage in the focal field using 
land use data within a 300-m radius, mainly based on the 
area of source habitat (i.e. pastures and graminoid-domi-
nated fallow fields). Similar results on the effective spatial 
scale of S. rubrovittatus abundance were reported in two 
independent regions, which are 300 km away from each 
other, suggesting some inter-regional generality [13, 14]. 
The damage prediction model and the hazard map for 
S. rubrovittatus can be applied to improve management 
options for the pest and to allocate the optimal labor 
required for spraying pesticides. It is anticipated that 
the performance of the predictive model will improve as 
it becomes available in wider areas. Developing a dam-
age prediction model for pests in a single region that can 
be applicable to neighboring regions may help to predict 
pest damage in wider areas, and further enhance the 
development of effective pest management practices.

To examine whether the inter-regional generality of the 
relationship between landscape factors and crop dam-
age could be established in agricultural landscapes that 
have similar contexts, a field study was carried out in two 
extra regions that had a similar landscape context with 
the original region, each in a different year of 4 years in 
total. The data obtained in the two regions were com-
pared with that of the original region of 3 years [11]. We 
extrapolated a damage prediction model to two different 
areas that had similar landscape contexts to the region 
where the damage prediction model was developed. We 
hypothesized that the relationship between landscape 
factors and crop damage would be comparable across 
regions with similar landscape contexts, and that it would 
be possible to extrapolate the damage prediction model. 
We also predicted that the accuracy of the model’s pre-
diction would be reduced in extrapolated regions pre-
sumably owing to the influence of regional and local 
factors, such as pest abundance variation and associated 
factors relating to local land-use patterns, necessitating 
adjustments in parameter coefficients.

Results
When we checked the parallel slopes of regression lines 
to combine the data from two new regions with 4 years 
and one previous region with 3 research years, the 
model indicated that no significant regional difference 
was observed (LM: F = 0.091, df = 1, p = 0.789, Addi-
tional file 1: Table S2). In addition, no significant differ-
ence was observed for the two-way interactions between 
each land use and region (LM: p > 0.05, Additional file 1: 
Table S2 and Figs. S1 and S2) on the arcsine-transformed 
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percentage of pecky rice damage. These results sup-
ported the existence of an inter-regional common pattern 
among the pecky rice damage and the area of land uses. 
However, only the two-way interaction of source habitat 
and year was significant (LM: F = 15.21, df = 5, p = 0.047, 
Additional file  1: Table  S2), indicating that the research 
year had a significant effect on the coefficient between 
pecky rice damage and the area of source habitat. For the 
combined data of the current study and that of the pre-
vious study [11], which contained 93 samples, the com-
parison of observed and predicted values for pecky rice 
damage by the original predictive model was statistically 
significant (Fig.  1a), indicating that an inter-regionally 
common pattern was observed. However, when only the 
data for the two current study regions was assigned to 
the original predictive model of pecky rice damage, the 
relationship varied and was not statistically significant 
(LMM: n = 46, χ2 = 0.705, p = 0.401; Fig.  1b). The area 
under the receiver operating characteristic curve (AUC) 

value was 0.50 (Table  1), indicating the model perfor-
mance was poor and showed almost no discrimination 
ability to the current dataset. However, the discrimina-
tion accuracy of the model exceeded 50% and was 67.4%, 
despite the small range in pecky rice damage (0% to 
0.27%).

For the 93 samples of the combined data from the cur-
rent study and Tabuchi et al. [11], we created an extended 
predictive model of rice damage, for which the model 
equation is shown as below:

where y is the arcsine-transformed pecky rice damage 
at given points, 0.03 is the fixed intercept of the model, 
and the areas of source habitat, soybean fields, and paddy 

(1)

y = 0.03+ 32.07 ∗ Source habitat + 44.5 ∗ Soybean

+ 2.6 ∗ Paddy field + RIregion & year

(2)RIregion & year = uregion + wyear in region

(a) (b)
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Fig. 1 Post hoc comparison of the relationship between the observed and predicted values (%) for pecky rice: the original model a for the 
combined data; and b the data of the current study; and the extended model c for the combined data; and d the data of current study. All data 
were calculated after arcsine transformation. Reported R2 values are the conditional R2, which were estimated for the mixed models including the 
random effects
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fields were calculated within 300-m radii of the research 
points  (km2). These were the fixed part of the model. The 
 RIregion & year was the random intercept (Eq. 2), which con-
sisted of region-specific intercepts (uregion) and year-spe-
cific random intercepts in each region (wyear in region). All 
parameters of the original model were selected based on 
the Akaike information criterion (AIC)-based best model 
(Table  2), indicating that there was an inter-regional 
common relationship between landscape factors and 
rice damage. In the extended model, the coefficients for 
source habitat and soybean fields slightly decreased by 
7.98 point and 8.2 point, respectively (Additional file  1: 
Table S2). The second-best model consisted of the area of 
source habitat and soybean fields (Table 2).

By comparing the relationship between the observed 
and predicted values of pecky rice damage, the R2 value 
of the extended model improved by 14% (Fig. 1a and c) 
over the R2 value of the original model [11]. The pre-
dicted values of lower damage seemed relatively stable 
and were improved for the extended model with the 
current study data (Fig.  1d); however, the predicted 
higher damage range was underestimated, and the ten-
dency for underestimation did not improve with the 

combined data (Fig. 1c). The AUC value improved from 
0.73 for the original model to 0.79 for the extended 
model, indicating that both models had moderate accu-
racy (Table  1). When comparing the sensitivity, speci-
ficity, and positive and negative predictive values of 
the original model to the combined data, the specific-
ity and positive predictive values were improved by the 
extended model.

The relationship between the observed and predicted 
values of pecky rice damage from the current study data 
was statistically significant in the extended model (LMM: 
n = 46, χ2 = 17.30, p < 0.001; Fig.  1d). The AUC value 
of the extended model for only the data of the current 
study was improved to 0.74 (Table  1). In the extended 
model, the specificity and positive predictive values 
were improved, indicating that the extended model was 
more accurate for specificity and predicted true positives 
(Table  1). From the three-fold cross validation, which 
tested the model’s accuracy for unknown data within 
three regions, the R2 value between the observed and pre-
dicted pecky rice damage was 0.50 ± 0.09 (mean ± SD), 
and the mean AUC value ± SD was 0.73 ± 0.13, indicating 
that model accuracy for unknown data was moderate.

Table 1 Comparison of the model performance between the original and extended predictive models for the combined data and 
current study data

a The model was not significant (LMM, t = 0.839, p > 0.05)

Data Model R2 RMSE Accuracy (%) AUC Sensitivity Specificity Positive 
predictive 
value

Negative 
predictive 
value

Combined Original 0.323 0.157 72.0 0.73 61 75 37 89

(n = 93) Extended 0.466 0.118 77.4 0.79 67 80 44 91

Current study Original –a –a 67.4 0.50 33 73 15 88

(n = 46) Extended 0.285 0.193 82.6 0.73 33 90 33 90

Table 2 Summary of the top five linear mixed models describing the variation in the prevalence of pecky rice with land use within a 
300-m radius from each research point

The values of land use indicate model coefficients

Each value of the model was calculated with the function “lme ()” of the nlme package in R

Bold characters indicate significant variables

Temperature in September was not included owing to high multicollinearity with that of August

The variation inflation factors for all models showed no multicollinearity
† < 0.10, *< 0.05, **< 0.01, ***< 0.001. Values without * or † are not significant

ΔAICc Weight df Source habitat Soybean field Paddy field Elevation Temperature Intercept

May June July August

– 0.306 7 32.07*** 44.52* 2.61 – – – – – 0.03

1.63 0.135 6 32.20*** 44.26* – – – – – – 0.28

2.52 0.087 8 33.04*** 45.70* 2.49 – 0.17 – – – –2.52

2.72 0.078 8 32.40*** 44.65* 2.74 – – – –0.04 – 0.73

3.27 0.059 8 32.48*** 44.78* 2.68 – – – – –0.07 1.64
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The predicted values of pecky rice damage in the 
extended model were higher with increase in the area of 
source habitat and soybean fields (Fig.  2). Regardless of 
the lowest (Semine region in 2018) and the highest (Mae-
sawa region in 2011) risk cases, the rice grade decreased 
to second grade or lower in the case of the maximum 
area of source habitat, indicating that the risk of possible 
price decline is high under this situation.

The potential priority areas were mapped using the 
model (Fig. 3). The 95 priority areas were selected from 
among 380 hexagons. Thus, the priority areas for pest 
management were successfully visualized. The model 
prediction varied between the highest- and the lowest-
risk cases, and 167 and 49 priority areas were selected, 
respectively (Additional file 1: Fig. S3).

Discussion
Our study supported the hypothesis that an inter-
regional common relationship was observed between 
landscape factors and crop damage by a pest across three 
agricultural landscapes. The original predictive model 
was applicable to all regions within the current study and 

the original region (Fig. 1a, Table 2), suggesting that the 
original model is able to predict rice damage with moder-
ate accuracy. However, direct extrapolation of the origi-
nal damage prediction model to only the extrapolated 
regions of the current study was not straightforward 
(Fig. 1b, Table 2), resulting in lower accuracy than in the 
original region of the model. Data from the current study 
did not include a degree of damage higher than four for 
the arcsine-transformed pecky rice damage, thus, model 
accuracy may vary in the region or year of higher risk of 
pecky rice damage. Previous studies dealing with both 
empirical and theoretical arguments suggest that effec-
tive spatial scale and associated biological responses 
against landscape factors would differ between regions 
even with the same species (reviewed in [3]) and, thus, 
extrapolation would not be easy. The current study exam-
ined identical species using the same spatial scale in sev-
eral research regions. We empirically demonstrated that 
the effective spatial scale of the pest was inter-regionally 
applicable in relation to landscape factors and crop dam-
age by S. rubrovittatus, although other spatial scales were 
not examined.

Our results showed that adjustment of the parameter 
coefficients of the predictive model by adding additional 
regional data can improve predictions when we use 
models developed over a wider area. The relationships 
between landscape factors and responses of different 
arthropod pests are highly dependent on the pest taxa 
and the nature of their trophic interactions (e.g. [15]). 
The trophic interaction of our study between S. rubro-
vittatus and its natural enemies is relatively simple com-
pared with previous studies. Irrigated rice fields are the 
most biologically diverse agroecosystems, and regional 
and local conditions affect rice arthropod communi-
ties [16, 17]. However, insecticides also reduce species 
diversity and abundance in rice agroecosystems [18–20]. 
Top-down regulation of S. rubrovittatus is not strongly 
expected in this study, because the population of such 
natural enemies is suppressed by conventional manage-
ment, such as spraying insecticides [21–23] and the spe-
cies has almost no specific natural enemies other than 
spiders [14]. Stenotus rubrovittatus seldom reproduces in 
rice paddy fields [10], so the number of individuals invad-
ing rice paddy fields is mostly determined by the source 
habitat of the surrounding landscape. Therefore, our 
study may not be directly applicable to other pests, crops, 
and agricultural landscapes. However, our results suggest 
that inter-regional commonality of biological responses 
to landscape factors may exist at some scales in the popu-
lation dynamics of pests and organisms that have similar 
ecological characteristics with S. rubrovittatus.

In this study, there were several common landscape 
factors. For example, we carefully selected regions with 
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rice-dominated landscapes and similar major crop com-
position, rice growing season, and management intensity 
for insect pests (i.e. the number of pesticide applications). 
In addition, the local environment and management 
intensity of pests and weeds in each field were very simi-
lar, and the species composition of major insect pests was 
similar. In contrast, several factors, such as the research 
year and associated climatic conditions, and the quality 
of source habitat of the pest (i.e. species composition of 
graminoid weeds) differed between the regions exam-
ined. Furthermore, the percentage of S. rubrovittatus 
among major grain-attacking pest species in the regions 
varied. These factors might change the accuracy of the 
original predictive model of crop damage. However, the 
extended predictive model here could be assigned within 
50  km2 in this study; similar biological responses of plan-
thopper pests were shown at an equivalent spatial scale 
in the extra fine-grained Asian rice landscapes in China 
[24]. Moreover, it was possible to extrapolate the predic-
tive model over wider areas that had similar environ-
mental conditions. For example, similar results on the 
relationships between S. rubrovittatus abundance and 
landscape factors at similar spatial scales were reported 
in two independent regions, which were 300  km apart 
[13, 14]. Over large areas of hundreds of kilometers, 
previous studies have shown common patterns in the 
response of landscape factors and biological responses of 
arthropods [25–27], although there has been no attempt 

to extrapolate using empirical validation as done in the 
current study. Therefore, the extended predictive model 
may be able to extrapolate even further from the area 
of the current study if the environmental and biological 
context is similar.

Further improvement of the accuracy and sensitivity 
of the predictive model should be considered, however. 
The extended model prediction varied among the lowest 
and highest risk cases (Fig. 3, Additional file 1: Fig. S3), 
indicating that regional and other related factors, which 
were not considered in this study, affected the model fit-
ting. The prediction accuracy of our extended predictive 
model was demonstrated to be moderate, and the accu-
racy of the model might be improved by incorporating 
such factors. Our predictive model only included land 
use; therefore, incorporating values relating to man-
agement practices or pre-cropping climatic conditions 
and other unknown factors may improve the model’s 
accuracy in the future. A combination of land use, cli-
matic conditions, and pest management practices affects 
population dynamics in cotton pests [27] and soybean 
aphids [26], which is reasonable to explain the population 
dynamics of poikilothermic organisms. Previous studies 
of rice-attacking pentatomids in Japan suggested that the 
temperature of the rice heading period and grain-filling 
period has a positive effect on the total pecky rice dam-
age of several pentatomid species, including S. rubrovit-
tatus in southwestern Japan [28] and the abundance of 

Fig. 3 Priority area map of potential pecky rice damage in agricultural fields with a grid layer of 300-m hexagons. (1) Maesawa region, Oshu city, 
(2) Otomo region, Rikuzen-Takata city, and (3) Semine region, Kurihara city. Gray, black, and dotted areas represent forest, open water, and other 
land uses, respectively. Shapes in the figure indicate the studied rice paddy fields in each research year (see also Fig. 4). Squares indicate regions 
examined. Predicted values in hexagons were calculated using the land-use data in 2013 of Maesawa, 2018 of Otomo, and 2016 of Semine region. 
The model prediction of the map does not contain any region- and year-specific effects
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another mirid species, T. caelestialium, in northern Japan 
[29]. However, elevation and temperatures were not sta-
tistically significant beyond regions, indicating that these 
factors did not affect the predictive model in this study. 
Our study included only three regions, and research 
fields were clustered in each region, which may have 
resulted in less variability in climatic conditions. There-
fore, the effect of temperature might not be detected in 
the current data set, and adding more regions, tempera-
ture, and other climatic conditions might improve the 
predictive model as factors potentially explaining pecky 
rice damage.

Our spatially explicit predictive model of crop damage 
only included land-use data without data on pest abun-
dance, which allowed us to identify potential priority areas 
after the spatial arrangement of arable fields in a certain 
year has been determined. The predicted value for pecky 
rice damage was relatively stable for estimation of the haz-
ard to brown rice first and second grades from arcsine-
transformed values of zero to three (Fig. 1). However, the 
value was not sensitive enough for a quantitative predic-
tion (Fig.  1), and the model prediction of more severe 
pecky rice damage was generally underestimated (Fig. 1a 
and c). This prediction tendency would be derived from 
the effect of research year (Additional file 1: Table S1), and 
the biological phenomenon caused by S. rubrovittatus. The 
sites with a lower percentage source habitat stably suffer 
lower damage, and more severe damage occurs unexpect-
edly at sites with a higher percentage of source habitat. 
However, the model performed accurately enough to pre-
dict whether the brown rice would be first grade, which is 
the most important concern for local farmers. Thus, our 
results will be applicable for local farmers and others in 
determining appropriate pest management policies and 
to support decision-making in several regions. This model 
and the priority area map will help to determine the areas 
that should receive insecticide applications and the num-
ber of applications that an area may require. Farmers usu-
ally need to optimize the allocation of resources necessary 
to mitigate crop damage by spraying insecticides at the 
most effective period because of limited time and labor. 
By using the current predictive model, they will be able to 
focus their labor in high priority areas and might be able 
to omit spraying insecticides for low priority areas, which 
may lead to savings in costs and labor.

Conclusions
In summary, at least for the three regions examined in 
this study, a common single predictive model for predict-
ing crop damage using land use data within an empirically 
determined spatial scale can be applied in independ-
ent regions in the agricultural landscapes. However, the 
model application in this study has the limitation that 

the extended model was not extrapolated to other new 
regions and its accuracy was not tested; therefore, further 
investigation will be needed. Agricultural landscapes are 
anthropogenically managed, especially in regions that 
grow grain intensively. Under such relatively well-man-
aged environments, it is valuable to know how to extrap-
olate spatially explicit predictive models after empirically 
examining the environmental conditions among regions. 
For efficient regional pest management, we will need to 
incorporate the ecological understanding of this study to 
model pest systems. Here, crop damage is usually related 
to pest abundance, so it was examined as an extended 
biological response of pests to landscape factors. Bio-
logical responses include a wide variety of factors such 
as species occurrence, abundance, and breeding [3], and 
cover several ecosystem services such as pest suppression 
and pollination. Little is known about the inter-regional 
common relationships of such responses and few studies 
have examined the challenges of extrapolation, so fur-
ther work is needed in this area. From the point of view 
of model application, several environmental hazards such 
as plant pathogens [30, 31], wildlife [32], vector-borne 
diseases [33], and alien invasive species [26, 34], have 
been dealt with in previous studies. It might be possible 
to develop early-warning or preventative guidelines by 
offering region-wide management options. Such trials 
will be done in the near future and the application of the 
model will be validated in further studies.

Methods
Study insect
Stenotus rubrovittatus is a major rice pest causing pecky 
rice in eastern Asian countries including Japan [9, 10]. 
Contamination of brown rice with pecky rice grains 
results in a lower rice grade and affects the market price. 
Under Japanese rice quality regulations, there are four 
grades of brown rice (first, second and third grades, and 
substandard) based on the percentage of pecky rice: first 
grade ≤ 0.1%, 0.1% < second ≤ 0.3%, 0.3% < third ≤ 0.7%, 
and 0.7% < substandard [35]. Stenotus rubrovittatus 
occurs mainly in habitats dominated by graminoid weeds 
[12]. The abundance of the species in rice paddy fields 
increases after the flowering stage of the rice plant, and 
peaks sharply to make the connection between adults/
nymph with rice and graminoid weeds easier. Numbers 
then decline after a week and increase again approxi-
mately 2 weeks after the first peak [36]. Indeed, while S. 
rubrovittatus nymphs prefer graminoid weeds to rice [37] 
and rice is not a good food resource for development, the 
adults of this species are preferentially attracted by vola-
tiles of flowering rice panicles [38].
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As mentioned earlier, Tabuchi et  al. [11] developed 
a predictive model of pecky rice damage using land use 
within a 300-m radius which is the effective spatial scale 
of S. rubrovittatus, using a single application of insecti-
cide for stinkbugs and one rice variety, ‘Hitomebore’. The 
functional spatial scale demonstrated from independent 
studies with different locations was found to be between 
300 [13] and 400 m [14]. We set the effective functional 
spatial scale as a 300-m radius from the focal rice paddy 
fields in this study, based on these independent studies. 
The major factor affecting pecky rice damage in the pre-
dictive model was the area of source habitat for S. rubro-
vittatus. The area of soybean fields was examined as an 
additional component of the predictive model, but this 
was only marginally significant. Soybean itself is not a 
host plant of S. rubrovittatus; however, soybean fields 
that are not well managed for weeds often have a high 
density of graminoid weeds. Moreover, the abundance of 
S. rubrovittatus (i. e. the number of adult males caught by 
synthetic sex pheromone-baited traps) was not an impor-
tant model parameter according to model selection using 
the AIC [11].

Study site
The multi-year field study was conducted in two regions 
located in northern Honshu Island, Japan (Fig.  4, 
Table  3). Two-year (2018 and 2020) and 3-year (2016–
2018) studies were performed for the Otomo and Sem-
ine regions, respectively. The data were compared with 
the data from the previous study for the Maesawa region 
from 2011 to 2013 [11]. Maesawa and Otomo regions 
were located in Iwate Prefecture, and Semine was located 
in Miyagi Prefecture. The distances from the Otomo and 
Semine regions to Maesawa were 51.8 km and 44.6 km, 
respectively. The study regions were agricultural land-
scapes dominated by rice paddy fields, with some forests, 
and other land uses such as crop fields other than rice, 
open water, and urban areas (Fig.  4, Additional file  1: 
Fig. S1). In Maesawa and Semine, which were located 
inland, the other land uses were mainly composed of 
pastures, fallow fields, and urban areas (Table 4). Otomo 
was located in a coastal area, and forests and rice paddy 
fields are the major components of the agricultural land-
scape with small soybean fields, fallow fields and resi-
dential areas. Maesawa and Semine were typical of the 

Fig. 4 Map of the study area showing the positions of the rice paddy fields (white diamonds: previous study (Tabuchi et al. 2017); white squares, 
cross marks, circles and triangles: current study). Each circle centered on a point indicates a radius of 300 m. (1) Maesawa region, Oshu city, (2) 
Otomo region, Rikuzen-takata city, and (3) Semine region, Kurihara city. Agricultural land uses are indicated by different colors
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flat plain agricultural landscapes of northern Honshu 
Island, and Otomo was typical of agricultural landscapes 
in the coastal area of northern Honshu Island. In Mae-
sawa, almost 90% of pastures contained Italian ryegrass, 
Lolium multiflorum Lam. (Poales: Poaceae), which is one 
of the major host plants for S. rubrovittatus (Nagasawa 
and Higuchi 2012). In Semine, pastures contained a mix-
ture of Italian ryegrass and orchard grass Dactylis glom-
erata L. (Poales: Poaceae). Wild gramineous weeds, such 
as Digitaria ciliaris (Retz.) Koeler, Setaria viridis (L.) 
P.Beauv., Echinochloa crus-galli (L.) P.Beauv., Imperata 
cylindrica (L.) Raeusch., and Polypogon fugax Nees ex 
Steud., were observed in fallow fields. In Otomo, there 
were no pasture fields but several wild gramineous weeds 
such as D. ciliaris, S. viridis, E. crus-galli, and I. cylin-
drica were observed in fallow fields. The average area of 
source habitats, such as pastures that mainly consisted of 
Italian ryegrass and graminoid-dominated fallow fields 
was 11.0%, ranging from 1.3 to 29.4%, among the regions 
(Table 3, Additional file 1: Fig. S1). The present study sites 
were situated in a temperate zone. The mean temperature 
of the three regions over the research period from July 

to September was 20.3  °C, and mean precipitation per 
month during field research was 149.1 mm (Table 3).

Experimental design
To examine the inter-regional generality of the relation-
ship between pecky rice damage and land use, surveys 
of land-use types in the focal area were conducted every 
year during the multi-year field research periods for 
two regions, each in a different year for 4  years in total 
(Tables  3 and 4). The the data were compared with the 
previous data in the Maesawa region from 2011 to 2013 
[11]. We categorized seven land-use types: forest, rice 
paddy fields, soybean fields, other agricultural fields, 
source habitats of S. rubrovittatus (such as pastures and 
graminoid-dominated fallow fields), open water, and 
other land uses (Table 4). We set a research point of 10 m 
from the corner of the focal rice paddy field to avoid any 
effects of S. rubrovittatus movement caused by the mow-
ing of paddy field borders [36]. Within a 300-m radius 
around the focal field of each site, each land use type was 
identified using a combination of aerial photos taken by 
a commercial UAV (DJI Mavic Pro and DJI Mavic 2 Pro, 
DJI, Shenzhen, China) and visual field assessment (i.e., 

Table 3 Summary of research locations

Latitude and longitude are centroids of research fields in each location (datum: WGS84)

Mean temperature and precipitation averaged throughout the rice-growing season from May to September across all research years of each region

Meteorological data were obtained from the Japan Meteorological Agency (https:// www. data. jma. go. jp/ obd/ stats/ etrn/ index. php)

Elevation is based on the digital elevation model of the 5-m mesh (DEM5a) data provided by the Geospatial Information Authority of Japan (https:// maps. gsi. go. jp/)
a Data from Tabuchi et al. (2017)
b Data of current study

Location (Region, City, Prefecture) Latitude Longitude Year Total no. of rice 
fields examined

Mean 
temperature 
(°C)

Mean 
precipitation 
(mm/month)

Elevation (m)

Maesawa, Oshu,  Iwatea 39.07267 141.10849 2011–2013 47 20.3 145.1 87.9

Otomo, Rikuzentakata, Iwate 38.99107 141.69709 2018 and 2020 18 20.1 142.6 10.8

Semine, Kurihara, Miyagi 38.65049 141.05932 2016–2018 28 20.3 157.3 9.0

Table 4 Summary of fields examined in different regions

Different lowercase letters in each column indicates a significant difference (p < 0.001) by one-way ANOVA with the Tukey–Kramer HSD test

Location (Region, City, Prefecture) Average area of rice paddy 
field examined ± SE (ha)
(n)

Average area of fields investigated 
for land use in each year ± SE (ha)
(n)

Average distance 
between fields  ± SE 
(m)

Mean 
source 
habitat (%)
(range)

Maesawa, Oshu, Iwate 0.22 ± 0.02 a
(47)

0.15 ± 0.002 b
(3508)

810.6 ± 27.4 14.65
(3.55–28.68)

Otomo, Rikuzen-Takata, Iwate 0.23 ± 0.02 a
(18)

0.11 ± 0.003 c
(1223)

559.6 ± 16.1  0.32
(0.13–0.53)

Semine, Kurihara, Miyagi 0.28 ± 0.04 a
(28)

0.16 ± 0.005 a
(1911)

596.1 ± 89.8  9.34
(0.84–
29.09)

https://www.data.jma.go.jp/obd/stats/etrn/index.php
https://maps.gsi.go.jp/
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ground-truthing), for a total of 6,642 fields. The data 
were mapped and the area of each land use calculated 
using ArcGIS 10.4 [39]. We used the ArcGIS license of 
AFFRIT, MAFF, Japan, in this research. An arable field 
polygon dataset was provided by the Federation of Land 
Improvement Associations of Iwate Prefecture and Miy-
agi Prefecture, and the Ministry of Agriculture, Forestry 
and Fisheries [40]. The arable field polygon dataset only 
included arable land parcel information with no informa-
tion available on planted crops.

Most agricultural field margins were dominated by 
graminoids, suggesting that each field margin could 
act as a potential source habitat as previously reported 
(e.g. [13]). We calculated the area of field margin sur-
rounding each focal field using an equation based on 
the agricultural field area  (m2) (the area of field mar-
gin = 0.3978 × field perimeter (m) − 25.173), where 
0.3978 is the coefficient and − 25.173 is the intercept 
(Additional file 1: Fig. S4). A highly positive relationship 
was shown between the area of field margin and the field 
perimeter (R2 = 0.602, n = 33, p < 0.001). The calculated 
area of the field margin was added as one of the source 
habitats.

The three regions examined were fine-grained agri-
cultural landscapes, and the average size (± SE) of a 
rice paddy field examined was 0.24 ± 0.02  ha (Table  4). 
The average area (± SE) of fields investigated fir land 
use at Maesawa, Otomo, and Semine was 0.15 ± 0.002, 
0.10 ± 0.003, and 0.16 ± 0.004  ha, respectively, and sig-
nificantly differed among regions (one-way Anova, 
F2,6639 = 37.86, p < 0.001, Additional file 1: Fig. S5). There-
fore, there was an effect of land use configuration to some 
extent; however, most fields were in the interquartile 
range from 0 to 0.4 ha and overlapped, so that the effect 
was not likely to be serious among regions in this study. 
The average distance (± SE) between traps set in rice 
paddy fields was 809 ± 49 m, ranging from 596 to 1179 m 
(Table 4). All rice paddy fields were managed convention-
ally by local growers, and the rice varieties ‘Hitomebore’ 
in Maesawa and Otomo and ‘Sasa-nishiki’ in Semine 
was grown from mid-May to mid-October. Insecticide 
input for all research fields was controlled, and an insec-
ticide (dinotefuran) was sprayed once for pests attack-
ing rice grains in early August in every research year by 
a radio-controlled helicopter. Another insecticide (chlo-
rantraniliprole) was applied to all fields examined in 
mid-May, just before transplantation of rice seedlings by 
nursery-box application.

We checked the degree of hull-cracked rice grain 
occurrence (Additional file  1: Fig. S6), which influences 
pecky rice damage and depends on each rice variety. The 
level of pecky rice damage caused by S. rubrovittatus and 
the number of hull-cracked rice grains were common 

among the rice varieties [41], and the degree of damage 
could be estimated by using the degree of hull-cracked 
rice grains regardless of the rice variety. However, the 
percentage of hull-cracked rice grains among the current 
study regions did not exceed that of the original region of 
the model, thus we did not need to correct the damage 
level among regions.

We selected focal paddy fields in this study that con-
tained no graminoid weeds, such as Echinochloa spp. 
(Poales: Poaceae), or Cyperaceae weeds. These plants 
are suitable host plants for S. rubrovittatus, and enhance 
pecky rice damage [42].

To confirm whether S. rubrovittatus actually caused 
pecky rice damage, and to investigate the species com-
position of heteropteran pests causing pecky rice dam-
age, we conducted sweeping net surveys at selected rice 
paddy fields (Additional file 1: Table S3). Among the het-
eropterans sampled that can cause pecky rice damage 
within the study regions, 80.4% (range 46.7–98.0%) of the 
individuals were S. rubrovittatus.

The pecky rice damage was investigated by collecting 
plants from 20 rice hills containing 32,131 rice grains 
on average (range 18,498–46,049 grains) from each rice 
paddy in every year. After hulling, brown rice grains were 
sifted through a 1.9 mm mesh. We counted the number 
of intact and damaged grains and calculated the degree of 
rice damage.

Data analyses and model evaluation
All analyses were conducted using R 4.0.0 [43]. The pre-
dictive model of pecky rice damage [11] is shown as the 
following equation:

where y is arcsine-transformed pecky rice damage at 
given points and − 0.09 is a fixed intercept of the model. 
The areas of source habitat, soybean fields, and paddy 
fields in Eq. (3) were the data calculated within a 300-m 
radius of research points  (km2), and values to the left of 
asterisks are coefficients of the model. These are the fixed 
parts of the model. In Eq. (3), RI year is the year-specific 
random intercept described by year-specific variance 
with a normal distribution, and is the random part of the 
model. The yearly random intercepts were larger in the 
order of 2011, 2012, and 2013.

Before constructing the extended predictive model, we 
examined the parallel slopes of the regression lines for 
the regions and years by One-Way Multivariate Analy-
sis of Covariance to check whether we could combine 
data from the three regions for the four research years of 

(3)

y = − 0.09+ 40.05 ∗ Source habitat + 52.7 ∗ Soybean

− 1.12 ∗ Paddy field + RIyear
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the current study and 3 years of the previous study [11]. 
The arcsine-transformed percentage of pecky rice was 
examined as a response variable, and the area of land 
uses (source habitat, soybean field, and rice paddy field), 
which were important factors in the original predictive 
model of rice damage [11]), region, research year, and 
their two-way interactions were analyzed as fixed factors.

The percentage of pecky rice damage was analyzed 
using a general linear mixed model in the nlme pack-
age [44]. The percentage of pecky rice damage was arc-
sine transformed, and a Gaussian error distribution was 
applied. In the model, the area  (km2) of soybean fields and 
rice paddy fields, and source habitat of S. rubrovittatus, 
which included pastures and graminoid-dominated fal-
low fields, were set as fixed factors. To construct a single 
common predictive model applicable in different regions 
and years, regions and research years were treated as two 
levels of random factors in the model: intercepts were 
calculated for the three regions and each research year in 
each region, so that the model had three region-specific 
random intercepts and eight year-specific random inter-
cepts [three for Maesawa (2011–2013), three for Sem-
ine (2016–2018), and two for Otomo (2018 and 2020)]. 
Meanwhile, to find a better approach for model improve-
ment, we also tried to apply the following models: the 
random slope model, the model with nested years across 
the region, and the Bayesian model. However, substantial 
improvement was not demonstrated in R2 and AIC val-
ues, so we used the extended predictive model (Eq. 1).

As mentioned above, the predictive model of pecky 
rice damage [11] is only composed of land use variables. 
We assigned values that were obtained from the current 
study to the original model and calculated the predicted 
value of pecky rice damage. In Tabuchi et  al. [11], the 
random intercept was assigned the highest value in 2011 
to obtain a conservative output. After that, to adjust the 
coefficients of each fixed factor to the data of the current 
study regions, we prepared an extended predictive model. 
Using data from the current study and the original study 
[11], we analyzed the pecky rice damage and prepared 
the model. The area of source habitat, soybean fields, and 
rice paddy fields within 300 m of the sampled field were 
set as fixed factors, and research year and regions were 
set as random factors. We ranked the plausibility of the 
models using Akaike’s information criterion adjusted for 
small sample sizes (AICc). If the difference in the ΔAICc 
was less than 2, then that model was considered more 
relevant than the other models [45]. Multicollinearity of 
the model (i.e. whether the variance inflation factor was 
less than 10; [46]) was also checked. When the extended 
model was statistically significant, we calculated the pre-
dicted value of pecky rice damage.

To evaluate the suitability of the extrapolation of the 
original model and whether the predicted values from the 
extended model improved on the original model, post hoc 
comparisons of the observed and predicted values calcu-
lated by the models were performed with a general lin-
ear mixed model using the nlme package. We compared 
both the data of the current study only, and the current 
and the original data combined. Research year and region 
were added to the model as random factors. The R2 values 
for the mixed models were calculated using the function 
r.squaredGLMM from the package MuMIn [47]. The pre-
dictive performance of the extended model for unknown 
data was evaluated by three-fold cross validation.

The accuracies of the original and the extended models 
for predicting the amount of first grade brown rice, which 
is of greatest importance to local farmers were measured 
and compared by the AUC curve [48] using observed and 
predicted values in the R package ROCR [49]. For the 
original and the extended models, positive and negative 
classification errors, and the proportion of correct pre-
dictions (sensitivity, specificity, and positive and negative 
predictive values), were calculated to determine the rel-
evance of the model.

To demonstrate the sensitivity of the extended model to 
show how the prediction values of the model behave, we 
calculated the model prediction values for the lowest and 
highest risk cases, which were determined from the low-
est and highest random intercepts. The predicted values 
were fitted using the minimum, average, and maximum 
areas of source habitat and soybean fields in the data, 
which were shown to be significant factors in the original 
predictive model in Tabuchi et al. [11]. In this calculation, 
the average area of rice paddy fields was used in all cases.

Priority area map construction
On the basis of a predictive spatial model, we constructed 
a map showing the potential priority areas for pecky rice 
damage. Because we only investigated the surrounding 
land use of fields within 300 m radii of research points, for 
each region and surrounding wider area (Fig. 4) other than 
the research fields, we determined the land use of each field 
by visualization. Satellite and aerial imagery taken from 
DigitalGlobe, which was available as a base layer in Arc-
GIS 10.4 [39] in June 2012 for the Maesawa region and in 
August 2017 for the Semine region was used as a reference. 
For Otomo, we used the satellite imagery from Google 
Earth taken in October 2017. The results of direct observa-
tions of land-use types were used as a reference. In total, 
18,319 agricultural fields and other land-use areas were 
determined and mapped. To construct the priority area 
map, the focal agricultural area was divided into hexagons 
with each side being 300 m, which is the maximum size fit-
ting inside a circle with a 300-m radius. Only hexagons that 
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included agricultural fields were selected. To rank the risk 
to rice paddy fields in each hexagon, the area of each land 
use type within each hexagon was calculated, and these 
data approximated a circle of 600-m diameter. The area of 
land use in each hexagon was assigned to the model for 
extrapolation to the surrounding area. The predicted values 
of pecky rice damage were classified according to the four 
brown rice grades and then mapped using color-coordi-
nated hexagons.
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Additional file 1. Table S1. Summary of One way Multivariate Analysis 
of covariance model that examined the effects of the area of land uses 
(source habitat, soybea n field, and rice paddy field) within a 300 m radius, 
regions examined, and research years on arcsine transforme d pecky rice 
damage. Table S2. Summary of the model coefficients ((± 95% CI) of 
fixed factors and t he value of the fixed intercept for the extended model’ 
and the original model’ (Tabuchi et al., 2017). Table S3. Summary of net 
sweeping surveys in selected rice paddy fields. Figure S1. Percentage of 
the area of (a) source habitat, (b) soybean fields and (c) rice paddy fields 
within a 300-m radius in each region and year. The data are represented as 
box plots with median values as thick lines and mean values as diamonds, 
showing the 25th and 75th percentiles. Whiskers extend to the most 
extreme data point that is no more than 1.5 times the interquartile range 
from the box. Outliers are shown as open circles. Figure S2. Arcsine-trans-
formed percentage of pecky rice damage in each region and year. The 
data are represented as box plots with median values as thick lines and 
mean values as diamonds, showing the 25th and 75th percentiles. Whisk-
ers extend to the most extreme data point that is no more than 1.5 times 
the interquartile range from the box. Outliers are shown as circles. Figure 
S3. Priority area map of potential pecky rice damage of the highest risk 
(upper) and the lowest risk (bottom) case with a grid layer of 300 m hexa-
gons. Shapes in the figure indicate the studied rice paddy fields. Regions: 
(1) Maesawa, (2) Otomo, and (3) Semine. Figure S4. Relationship between 
field perimeter (m) and the area of field margin. Figure S5. Area of rice 
fields examined (a) and the fields investigated for land use in each region 
(b). The data are represented as box plots with median values as thick lines 
and mean values as diamonds, showing the 25th and 75th percentiles. 
Whiskers extend to the most extreme data point that is no more than 1.5 
times the interquartile range from the box. Outliers are shown as open 
circles. Different letters above the boxes indicate a significant difference (p 
< 0.001) by one-way ANOVA with the Tukey–Kramer HSD test. Figure S6. 
Percentage of hull-cracked rice grains in each region and year. The data 
are represented as box plots with median values as thick lines and mean 
values as diamonds, showing the 25th and 75th percentiles. Whiskers 
extend to the most extreme data point that is no more than 1.5 times the 
interquartile range from the box. Outliers are shown as open circles.
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