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Abstract 

Background: Long‑term balancing selection (LTBS) can maintain allelic variation at a locus over millions of years and 
through speciation events. Variants shared between species in the state of identity‑by‑descent, hereafter “trans‑spe‑
cies polymorphisms”, can result from LTBS, often due to host–pathogen interactions. For instance, the major histo‑
compatibility complex (MHC) locus contains TSPs present across primates. Several hundred candidate LTBS regions 
have been identified in humans and chimpanzees; however, because many are in non‑protein‑coding regions of the 
genome, the functions and potential adaptive roles for most remain unknown.

Results: We integrated diverse genomic annotations to explore the functions of 60 previously identified regions 
with multiple shared polymorphisms (SPs) between humans and chimpanzees, including 19 with strong evidence of 
LTBS. We analyzed genome‑wide functional assays, expression quantitative trait loci (eQTL), genome‑wide association 
studies (GWAS), and phenome‑wide association studies (PheWAS) for all the regions. We identify functional annota‑
tions for 59 regions, including 58 with evidence of gene regulatory function from GTEx or functional genomics data 
and 19 with evidence of trait association from GWAS or PheWAS. As expected, the SPs associate in humans with many 
immune system phenotypes, including response to pathogens, but we also find associations with a range of other 
phenotypes, including body size, alcohol intake, cognitive performance, risk‑taking behavior, and urate levels.

Conclusions: The diversity of traits associated with non‑coding regions with multiple SPs support previous hypoth‑
eses that functions beyond the immune system are likely subject to LTBS. Furthermore, several of these trait associa‑
tions provide support and candidate genetic loci for previous hypothesis about behavioral diversity in human and 
chimpanzee populations, such as the importance of variation in risk sensitivity.

Keywords: Trans‑species polymorphisms, Balancing selection, Long‑term balancing selection, Non‑coding variants, 
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Significance statement
Most genetic variants present in human populations are 
young (< 100,000 years old); however, a few hundred are 
present in both humans and chimpanzees, suggesting 
that they may be millions of years old with origins before 

the divergence of these species. Some of these shared 
polymorphisms were likely influenced by balancing selec-
tion—evolutionary pressure to maintain genetic diversity 
at a locus. In spite of their age, the selected functions, 
especially for non-coding regions, are largely unknown. 
We integrate genome-wide annotation strategies to iden-
tify candidate non-coding variants likely under long-term 
balancing selection (LTBS) and find associations with 
immune system function, behavior (addiction, cogni-
tion, risky behavior), uric acid metabolism, and many 
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other phenotypes. These results substantially expand 
our understanding of functions potentially associated 
with LTBS and support a role for balancing selection in 
humans beyond the immune system.

Background
The interaction between populations and environments 
is dynamic. Over time, allele frequencies in a population 
shift due to drift and adaptive responses to specific envi-
ronmental pressures. Most genetic variants are short-
lived compared to the timescale of species. But on rare 
occasions variants persistently segregate at intermediate 
frequencies for millions of years, sometimes pre-dating 
the most recent common ancestor (MRCA) between two 
sister species [1–6]. These trans-species polymorphisms 
are often a sign of genomic regions under long-term bal-
ancing selection (LTBS). Over time, instances of LTBS 
leave signatures in the genome that differentiate them 
from those under other forms of selection [1, 4, 5, 7], 
such as maintenance of more alleles at intermediate fre-
quency than expected by chance, increased levels of neu-
tral variation near the target site, and deep coalescence 
times.

Several instances of LTBS regions have been observed 
in humans and other primates, mostly within the major 
histocompatibility complex (MHC) or the ABO blood 
group locus. For example, the MHC, or human leuko-
cyte antigen (HLA) system in humans, is a family of var-
ied proteins expressed on the cell surface with essential 
functions in adaptive immune response and regulation. 
Balancing selection on different components of the HLA 
region dates to the common ancestor between chimpan-
zees and humans [8–10]. Similarly, the ABO gene has 
three alleles, and its variants lead to different blood cell 
antigens, or lack of thereof, on the surface of the cell. Var-
iation in this group could have a benefit in the immune 
response to pathogens, and balanced polymorphisms 
at this locus are present in gorillas, orangutans, and 
humans, and thus likely date back to their last common 
ancestor [11]. Several other immune-related genes show 
LTBS between humans and other primates, e.g.: TRIM5, 
a RING finger protein 88 [12–14], and ZC3HAV1, a zinc 
finger CCCH-type antiviral protein 1 [15–18]. These 
genes have important roles in host/pathogen response 
through inhibition of virus replication.

The high allelic variation maintained by balancing 
selection at a locus can also enable adaptation to new 
environments. For example, some variants found under 
balancing selection in African and ancestral human 
populations have experienced directional selection in 
non-African populations (European and Asian), with 
one allele becoming predominant in the population 
[16]. This suggests the adaptive potential of the variation 

maintained under balancing selection; however, in some 
cases the adaptive variants themselves may have hitch-
hiked with those under LTBS.

Recent studies have developed statistical methods to 
identify instances of balancing selection in genome-wide 
data [1–3, 5, 19]. Some have focused on detecting LTBS 
using trans-species data, while others have considered 
balancing selection over shorter timescales based on 
single-species data. For example, DeGiorgio [20] devel-
oped likelihood-ratio tests  (T1 and  T2) based on comput-
ing probabilities of polymorphism and substitution under 
LTBS based on inter-species coalescent modeling to test 
the spatial distribution of polymorphisms and mutations 
around genomic sites. With this method they identified 
balancing selection on HLA regions, but also in a gene 
that had no previous associations with balancing selec-
tion, FANK1, which is involved in the suppression of 
apoptosis during/after the process of meiosis. They also 
found enrichment for signals in genes with other func-
tions: cell adhesion, membrane protein activity, and 
components of membranes. A more recent study [2] 
expanded the  T2 method to seek trans-species balancing 
selection without direct consideration of trans-species 
polymorphism and identified a handful of additional 
LTBS candidates. Bitarello et al. [1] developed Non-cen-
tral Deviation (NCD) statistics that quantify the deviation 
of the local site frequency spectrum (SFS) under balanc-
ing selection from neutral expectations. The statistic 
identifies genomic windows with variants at intermedi-
ate frequencies and higher than expected levels of vari-
ation as a signature of balancing selection [21]. Applying 
the statistics to African and European 1000 Genomes 
populations, they found thousands of candidates for bal-
ancing selection in humans. They also showed varying 
directional selection in different populations, provid-
ing evidence for the adaptive potential of regions under 
balancing selection. Siewert & Voight [5] developed ß, a 
summary statistic for detecting genomic windows with 
clusters of intermediate frequency alleles suggestive of 
balancing selection. They also recently updated the ß sta-
tistic to consider both polymorphism and substitution 
data [19]. Among the highest scoring windows in these 
two analyses, they highlighted three genes (CADM2, 
WFS1, and ACSBG2) with functions outside the immune 
system.

Shared polymorphisms (SPs) between species, espe-
cially when more than one falls on a haplotype, suggest 
the action of LTBS. For example, Leffler et  al. [4] com-
pared polymorphisms across the genome in Yoruba indi-
viduals from the 1000 Genomes Project to those found in 
Western chimpanzees sequenced by the PanMap Project. 
They identified more than 100 non-coding haplotypes 
with multiple SPs within 4 kilobases (kb) and in high LD 
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as candidates for LTBS. However, sequencing errors and 
regions with high mutation rates can create patterns that 
can be mistaken for LTBS. Further modeling has shown 
that it is unlikely to observe haplotypes with more than 
two TSPs in close proximity by chance without balancing 
selection [2, 22].

Despite the importance and prevalence of balancing 
selection, most of the non-coding haplotypes bearing 
potential signatures of LTBS (e.g., multiple SPs), have 
not been functionally characterized. Here, we focus on a 
high confidence subset of the non-coding SPs identified 
by Leffler et al. [4]. Determining the candidate functional 
roles of these SPs in human adaptation and health would 
deepen our understanding of the dynamics of balancing 
and positive selection and their roles in adaptation to 
new environments.

We identify potential functions associated with SP 
regions in humans by applying several genome-wide 
functional annotations and association tests. Our results 
identify diverse functions, including effects unrelated to 
the immune system, that may have been targets of bal-
ancing selection on the human and chimpanzee lineages.

Results
Human‑chimpanzee shared SNPs
We consider 125 human genomic regions contain-
ing multiple variants segregating in both humans and 
chimpanzees in close proximity and in high LD [4]. The 
set was defined based on identifying groups of human-
chimp shared-polymorphisms (SPs) within 4  kb of each 
other outside the major histocompatibility (MHC) locus. 
Based on coalescent theory, this pattern is unlikely to 

result from neutral processes [4, 11], and  these SPs are 
thus candidates for LTBS (Additional file  1: Fig. S1). 
However, these criteria alone are insufficient to guaran-
tee that the SPs are the result of identity-by-descent and 
driven by LTBS [22].

To identify regions with stronger evidence of balanc-
ing selection, we consider two additional recent genome-
wide balancing selection scans [1, 19] and additional 
evidence of identity-by-descent (Fig. 1). The first scan is 
based on NCD, a balancing selection detection statistic 
that uses the allele frequency spectrum to find regions 
enriched for intermediate frequency alleles [21]. The 
second is based on BetaScan2, which detects balancing 
selection by identifying deviation from neutrality in the 
vicinity of a haplotype from variance in substitutions and 
mutation rate. We apply a filter based on regions con-
taining evidence in NCD from at least one population 
or regions containing at least one SP with a BetaScan2 
score of 2.0 or higher. Of the initial set of 125 candidate 
haplotypes, 60 were highlighted in these recent balanc-
ing selection scans. We refer to the 133 variants on these 
haplotypes as candidate balanced shared polymorphisms 
(cbSPs). Next, to identify variants with the strongest evi-
dence of LTBS, we further filtered these regions based on 
additional evidence of human-chimp identity-by-descent 
to create set of candidate trans-species polymorphisms 
(ctSPs). For this set, we required the candidate haplo-
types additionally to have either extremely ancient times 
to most recent common ancestor (TMRCA) as estimated 
by ARGweaver [23] (> 140,000 generations ago) or more 
than 3 SPs per candidate haplotype. This resulted in 19 
haplotypes with 51 ctSPs. In summary, 60 out of the 

Fig. 1 Schematic of the criteria for identifying the SP sets used in this study. A previous study [4] reported a set of 125 candidate regions with two 
or more non‑coding human‑chimp shared polymorphisms (SP) within 4 kb. We refined this set based on several additional lines of evidence. First, 
we considered scores from two balancing selection statistics (NCD and BetaScan2) to create a set of 60 haplotypes with 133 candidate balanced 
SPs (cbSP). We consider regions with evidence for balancing selection in at least one population from NCD, or regions containing variants with 
BetaScan2 scores equal or higher than 2.0. We further filtered this set to the 19 haplotypes additionally predicted to be at least 140,000 generations 
old by ARGweaver or contain at least 3 SPs within 4 kb. These haplotypes include 51 candidate trans‑species SP (ctSP) with the highest likelihood of 
LTBSs
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original 125 candidate regions show evidence of balanc-
ing selection from at least one of BetaScan2 or NCD 
(Methods; Additional file  2: Table  S1), and 19 of these 
show additional evidence of identity by descent (Fig. 1).

In the following, we analyze functional annotations and 
associations for both cbSPs and ctSPs. In some analy-
ses, to capture associations tagged by variants in high 
linkage disequilibrium (LD) with cbSPs, we also con-
sidered potential tag SNPs in high LD (R [2] ≥ 0.8) in 
African, European, or East Asian populations from the 
1000 Genomes Project. This LD-expanded set for cbSPs 
includes 6,171 variants across the 60 regions (Additional 
file 1: Figure S2; Additional file 2: Table S2). By expand-
ing to include variants in high LD, we capture additional 
associations, but may also identify functions unrelated to 
balancing selection; thus, we report results on both sets.

Shared polymorphisms overlap diverse functional 
annotations
We intersected the cbSPs with diverse lines of functional 
evidence from large-scale genomic studies, including 
genome-wide functional genomics assays, eQTL, GWAS, 
and PheWAS. We found at least one functional annota-
tion for 98% (59 of 60) of the cbSP regions and all of the 
ctSP regions, covering 77 SPs and 772 LD SNPs (Fig. 2; 
Additional file  2: Table  S3). Limiting only to the SPs 
themselves, we found annotations for 68% (41 of 60) of 
cbSP regions and 84% (16 of 19) of ctSP regions. Here, 
we provide an overview of the overlap with these anno-
tations. In future sections, we provide details about each 
of these annotations. Variants in 93% (56 out of 60) of 
regions overlap annotated gene regulatory regions. This 
includes 23 cbSPs and 599 LD variants. We also found 64 
cbSPs across 34 regions with evidence of being expression 
quantitative trait loci (eQTL) across 48 tissues. We found 
genome-wide significant associations with phenotypes 
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in available genome- or phenome-wide association stud-
ies in 32% of the LD expanded regions (19 out of 60; 14 
GWAS Catalog and 11 UK Biobank from geneAtlas and 
NealeLab).

Evidence of gene regulatory function for SPs
We hypothesized that many of the non-coding SPs in our 
set perform gene regulatory functions. To evaluate this 
possibility, we intersected the cbSPs and variants in high 
LD with maps of functional regulatory regions from the 
Ensembl regulatory build [24]. We found 23 cbSPs with 
regulatory annotations and additionally 599 LD vari-
ants in 56 cbSP regions. These include variants in CTCF 
binding sites, open chromatin regions, promoter flank-
ing regions, enhancers, promoters, and known TF bind-
ing sites (Additional file 2: Table S4). We also tested cbSP 
regions for enrichment in any specific types of regulatory 
regions. We compared the observed overlap between 
cbSP regions and each type of regulatory annotation to 
the distribution of overlaps expected if cbSP regions were 
randomly distributed across the genome. We shuffled the 
cbSP regions 1000 times maintaining their length and 
chromosome distributions and avoiding genome assem-
bly gaps, ENCODE blacklist regions, and the MHC locus. 
We compared the number of overlaps observed with 
regulatory elements with the number from each random 
permutation (Additional file 1: Figure S3). cbSPs showed 
more overlap with enhancer and promoter elements than 
expected, but this was not significant, perhaps due to the 
small sample size (Additional file 2: Table S5).

Overlap of a variant with a regulatory annotation does 
not necessarily imply a regulatory function. To consider 
additional evidence of regulatory function, we examined 
eQTL in GTEx from 50 tissues for overlap with cbSPs. 
At least one eQTL was found for 34 of the regions (57%). 
Among these 34 regions, 64 cbSPs are themselves eQTL 
in 48 tissues (Additional file  2: Table  S6). We tested for 
enrichment of eQTL in cbSPs compared to the back-
ground across all genomic regions and found enrichment 
for eQTL activity in a diversity of GTEx tissues, including 
liver, whole blood, skin, and pancreas (Fig. 3).

We found diverse gene ontology (GO) terms among the 
genes influenced by cbSP eQTL, but no individual terms 
remained significant after multiple testing correction 
(Additional file  2: Table  S7). These results suggest that 
the targets of balancing selection in these regions may 
have functions in gene regulation across diverse tissues 
beyond the immune system (Additional file 2: Table S8).

Genome‑wide association studies link cbSPs to traits
Genome-wide association studies have identified thou-
sands of associations between genetic variants and 

human traits. We intersected the cbSP regions with asso-
ciations reported in the GWAS Catalog (downloaded 
2021/12), which is composed of over 170,000 associations 
in 4,070 terms. Since cbSPs themselves were not always 
directly tested in GWAS, we also include genome-wide 
significant (p <  = 5E−8) associations with the tag vari-
ants in high LD with SPs. We found significant associa-
tions for 52 different variants (Fig. 4A; Additional file 2: 
Table  S9). Among the functional associations we found 
immunological functions, hematological/blood measure-
ments, and anthropometric traits. The associations with 
immune traits were expected given the results of previ-
ous balancing selection studies and the few well-charac-
terized instances of LTBS. We identified many variants 
in LD with cbSPs that are associated with blood meas-
urement phenotypes and diseases related to immune 
response (Additional file 2: Tables S3 and S9). These traits 
include ulcerative colitis and other chronic inflammatory 
diseases (chr2 near cbSPs rs13426764/rs11694806).

We also found many neurological and behavior-
related associations among cbSP region variants. These 
traits include cognitive performance (rs13426764 
and rs11694806 on chromosome 2 and rs9869178/
rs2118072 on chromosome 3), alcohol and smoking sta-
tus (alcohol use: chromosome 16 near rs9933768 and 
rs57790054; smoking: chromosome 2 near rs13426764 
and rs11694806), risky behavior (automobile speeding 
propensity: chromosome 3, rs9869178/rs2118072), expe-
riencing mood swings (chromosome 2 near rs13426764 
and rs11694806), insomnia, neuroticism, sun-seeking 
behavior, and age at first sexual intercourse (Additional 
file  2: Table  S9). In addition to the immune response 
and neurological categories, we observed associations 
in reproductive traits (polycystic ovary syndrome, tes-
tosterone levels), urate levels, pancreatic cancer, and 
gut microbiota. An enrichment analysis found signifi-
cant results for GWAS categories including blood and 
immune related traits, uric acid levels (including urate 
and gout), cognitive performance measurements (intel-
ligence, educational attainment, math ability), smoking 
status, and gut microbiome measurement (Additional 
file 1: Fig. S4). We discuss several of these associations in 
more detail in following sections.

Phenome‑wide association studies link cbSPs to additional 
diverse traits
The growth of biobanks with linked genetic and phenotypic 
data has enabled the testing of the association of genetic 
variants with diverse traits within a single cohort. This 
PheWAS approach enables exploration of the functional 
and potentially pleiotropic effects of variants of interest 
[25]. Using published associations from the UK Biobank 
(geneAtlas and NealeLab), we analyzed the association 
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of cbSPs with over a thousand traits; all 60 of the regions 
were tested. Overall, we found that 150 different variants 
in 11 regions had at least one genome-wide significant 
association (P < 1E–8, Fig.  4B; Table  S10). Though testing 
different phenotypes than the GWAS, these associations 
were qualitatively similar to the GWAS results, in that 
blood and immune system phenotypes had many associa-
tions with cbSPs, but the cbSPs were also associated with 
a more diverse set of phenotypes. We found associations 
in many  categories including  blood assays, body meas-
urements, and lifestyle/environment  traits. Among the 

observed associations we found, for example: hair color, 
standing height, number of days/week walked 10 + min-
utes, and 28 variants associated with alcohol intake fre-
quency (Additional file 2: Tables S3 and S10).

Illustrative examples of diverse functions associated 
with cbSP regions
Integrating the above data, we found 38 cbSP regions 
with two or more lines of functional evidence (Fig.  2). 
This includes 13 regions with annotations from at least 
three evidence sources. To illustrate the diverse functions 
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associated with cbSPs, we highlight three of these regions 
(Additional file  2: Table  S1) [1, 19]. In these detailed 
analyses, we also considered additional manually identi-
fied annotations and associations from the literature and 
sources like the gwasAtlas [26].

Risky behavior and cognitive performance. A ctSP 
region on chromosome 3q24 is more than 235,000 
generations old, and thus has strong evidence of iden-
tity by descent between humans and chimpanzees. 
Both ctSPs in this region (rs9869178, rs2118072) are 
associated with a risky behavior:  automobile speed-
ing propensity (Additional file 2: Table S12). The ctSPs 
are also modestly associated with variation in brain 
white matter microstructure (Anterior corona radiata 
mean diusivities, P = 1.96E–6) [27], as reported in the 

gwasAtlas database. Variants in the expanded ctSPs 
region in 3q24 (hg19.chr3:143636420–143740729) are 
associated with risky behavior and cognitive perfor-
mance traits in multiple individual GWAS (Fig.  5A). 
For example, they are associated with automobile 
speeding propensity (P = 1E−8) [28], cognitive perfor-
mance (P = 5E−9), educational attainment (P = 1E–10) 
[29], and self-reported math ability and highest math 
class taken (both P = 3E–10). Many of the variants in 
high LD with the ctSPs in this region overlap annotated 
regulatory regions: open chromatin region, promoter, 
promoter flanking region, CTCF binding sites, and 
enhancer (Additional file  2: Table  S4). Furthermore, 
the ctSPs are significant eQTLs (P ≤ 1E−5) for the gene 
DIPK2A (C3orf58) across four GTEx tissues (small 
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Fig. 4 Genome‑ and phenome‑wide association studies link cbSPs to diverse traits. Genome‑wide significant (P < 1E−8) associations from the 
GWAS Catalog (A) and PheWAS over the UK Biobank (B) from the geneAtlas and NealeLab [26]. Each dot represents an association between a 
cbSP region and a trait. Many immune‑related traits (under immune system disorder, blood assays, and other measurements) are associated with 
cbSPs, but there are also associations with a wider variety of phenotypes including lifestyle and environment, neurological traits, and cognitive 
performance. Since few cbSPs themselves were directly tested in GWAS, we include GWAS Catalog associations with tag variants in high LD  (r2 > 0.8) 
with the cbSPs. We also observed associations in the "other measurements" and “other disease” parent categories, which include miscellaneous 
measurements and traits that did not fit in the listed categories. All associations are given in Additional file 2: Tables S9 and S10. For the most 
enriched GWAS categories, see Additional file 1: Figure S4 and Additional file 2: Table S11
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intestine terminal ileum, transformed fibroblasts, skin 
from the lower leg, and suprapubic skin). The DIPK2A 
protein has not been comprehensively functionally 
characterized, but it contains a protein kinase domain 
and is broadly expressed, including in the developing 
and adult brain. Deletion of this gene has been linked 
to autism, and its expression is responsive to neuronal 
activity [30].

Urate levels. Two cbSPs (rs1839333, rs1913638) on 
chromosome 8q21.11 are both significantly associated 

(P < 2.0e−18, Additional file 2: Table S12) with uric acid 
levels in multiple GWAS in European and Asian ances-
try populations (Fig.  5B) [31–33]. These variants are 
also associated with a range of body mass traits in the 
UK Biobank. Another variant in this locus (rs2941471, 
 R2 = 0.97 and  R2 = 0.82 in East Asians and Europe-
ans respectively) is associated with pancreatic cancer 
(p = 7E−10). Though elevated uric acid in the blood is 
associated with many conditions, it is a marker for pan-
creatic cancer [34]. This locus also contains LD SNPs 

Fig. 5 Illustrative examples of non‑immune functions associated with cbSPs. A LD SNPs in ctSP locus on 3q24 is associated with cognitive 
performance and risky behavior. Regional association plot showing statistically significant genome‑ and phenome‑wide associations (threshold 
p ≤ 1E−08), regulatory and eQTLs. This locus is characterized by neurological traits involved in educational attainment, cognitive performance, 
and risky behavior (automobile speeding propensity). Both ctSPs in this region (rs9869178, rs2118072) are eQTL in the gene DIPK2A (C3orf58). LD 
SNPs are found in enhancer and promoter flanking regions. B SNPs in high LD with cbSPs in 8q21.11 are associated with uric acid and urate levels. 
Regional association plot showing statistically significant genome‑ and phenome‑wide associations (P ≤ 1E−08), eQTL, and regulatory (open 
chromatin, CTCF binding site) SNPs. LD SNPs in this region are associated with urate (rs2941484, rs2943539) and uric acid (rs2977944, rs2941484) 
levels, and pancreatic cancer (rs2941471, p = 7E−10). C A cbSP in 16p12.3 is associated with alcohol intake frequency and comparative body size 
at age 10. The regional association plot shows statistically significant genome‑ and phenome‑wide associations (threshold p ≤ 1E−08), and eQTLs 
from GTEx. One of the cbSPs (rs57790054, yellow) is associated with alcohol intake in the UK Biobank. A variant in high LD (rs72771074, green) has 
been associated with alcohol use disorder in a previous GWAS. The cbSP is also strongly associated with insomnia (5e‑11). The cbSPs are nearby 
GPR139, a gene encoding a G‑protein coupled receptor expressed in the brain, whose expression levels influence alcohol drinking behavior in rats. 
Figures created with LocusZoom [40]
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(rs1805098 and rs2943549) in East Asians that are expres-
sion and splicing QTL for the gene HNF4G in testis, 
pancreas, and brain (P ≤ 5E−5). Variants in HNF4G are 
associated with several traits, including the development 
of hyperuricemia [35]. One of the cbSPs (rs1839333, 
p = 2.65E−05) is also associated with gout, although the 
p-value did not meet our strict threshold.

Body mass and alcohol intake. A cbSP (rs57790054) on 
16p12.3 (hg19.chr16: 20006097–20006986) is strongly 
associated with several growth and body mass phe-
notypes as well as alcohol intake frequency (Fig.  5C; 
P < 5E−8 for all). Another variant in high LD in Europe-
ans (rs72771074,  R2 = 0.89) with a cbSP (rs57790054) in 
this locus was associated with alcohol use disorder in a 
previous GWAS in a European cohort (P = 5E−8) [36]. 
The nearest gene, GPR139, encodes for a G-protein cou-
pled receptor expressed in the brain that is involved in 
alcohol drinking behavior and withdrawal symptoms in 
rats [37]. This region contains several variants in LD with 
cbSPs in regulatory regions, such as CTCF binding sites 
(rs117293173, rs13338055, rs74011247, and rs79521770). 
One cbSP (rs57790054, p = 1.89E−5) is an eQTL for the 
gene KNOP1 (aka C16orf88). This gene has been associ-
ated with obsessive compulsive disorder, among other 
diseases [38]. These results suggest that effects on growth 
and BMI or on addictive behaviors could be under LTBS. 
We note that there is some evidence of ethanol consump-
tion in chimpanzees, but it is unclear how widespread its 
availability was over the past several million years [39].

Discussion
In this study we aimed to characterize the function of 
genomic regions with multiple lines of evidence of LTBS 
on the human lineage. We started with candidate regions 
containing two or more human-chimp SPs in LD and 
close proximity. We then considered additional evidence 
from genome-wide scans for balancing selection with 
BetaScan2 and NCD, and allele age estimates from ARG-
weaver. Variants in the resulting candidate sets likely have 
deep ancestry in the common ancestor between humans 
and chimpanzees and have persisted in the genomes of 
both species for millions of years. However, the major-
ity of the non-coding candidate LTBS regions previously 
identified do not have known functions.

We addressed this challenge with the help of newly 
developed genomic annotation tools and identified at 
least one functional annotation for 59 out of 60 cbSP 
regions and all the ctSP regions. These annotations sug-
gest that non-coding SPs likely maintained by LTBS have 
diverse functions beyond enabling a flexible immune 
response to pathogens. This expands on several recent 
studies of balancing selection over shorter timescales that 

have also identified regions with functions outside the 
immune system [1, 5, 41, 42].

To explore the gene regulatory potential of cbSPs, we 
analyzed eQTL data from 48 tissues from the GTEx Atlas. 
We found that cbSPs are often eQTL for genes in tissues 
beyond the immune system, and we observed significant 
enrichment for eQTL activity in diverse tissues, including 
many brain and reproductive tissues. A recent study of 
genes potentially evolving under LTBS identified by the 
NCD2 statistic found enrichment for genes expressed in 
the lung, adipose tissue, adrenal tissue, kidney, and pros-
tate [1]. Among our non-coding candidate regions, there 
is significant enrichment in lung, nominally significant 
enrichment for adipose and adrenal tissues, and none for 
prostate or kidney (Fig. 3). These differences suggest that 
the functions of coding vs. non-coding regions subject to 
LTBS may differ. However, we note that the number of 
regions considered in each analysis is relatively small.

The phenotype associations we observe for candidate 
variants in GWAS and PheWAS suggest possible behav-
ioral, neurological, and morphological traits that may be 
targets of LTBS. In particular, our results provide support 
and candidate loci for previous hypotheses about the 
need for neurological and behavioral diversity in popu-
lations. For example, we found evidence for association 
with risky behavior and cognitive performance in one 
ctSP region. Selection has recently been shown to act on 
risk-taking behavior in anole lizards [43]. Thus, our iden-
tification of associations between ctSPs and human risk-
taking behavior (Fig.  4A) suggests that LTBS may have 
maintained genetic variants that contribute to variation 
in risk taking behavior in humans and chimpanzees. The 
ctSPs are eQTL for DIPK2A (C3orf58), which encodes 
for a protein kinase and has been associated with autism 
and other neurological disorders [44]. Associations with 
behavioral and cognitive traits must be interpreted with 
caution as these traits are very challenging to quantify 
and strongly influenced by social factors that may vary 
with other characteristics. Nonetheless, these asso-
ciations point to an influence of the ctSPs on behaviors 
relevant to risk tolerance. Thus, it is possible that main-
taining a diversity of risk tolerance in human and chim-
panzee populations has been beneficial.

Our results also raise the intriguing possibility that var-
iants that modulate urate levels have been under LTBS. 
Uricase, the enzyme that metabolizes uric acid into an 
easily excreted water-soluble form in most mammals, has 
been lost in great apes. This gene was disabled by a series 
of mutations that slowly decreased activity over primate 
evolution, increasing the levels of uric acid in blood [45, 
46]. It has been hypothesized that this loss of uricase 
activity was driven by increase fructose in primate diets 
due to fruit eating [45, 47]. It has also been proposed that 
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high levels of uric acid, a potent antioxidant, played an 
important role in the evolution of intelligence, acting as 
an  antioxidant in the brain [48]. However, as reflected 
in the associations with this locus, elevated uric acid 
levels contribute to many common diseases in modern 
humans, including chronic hypertension, cardiovascular 
disease, kidney and liver diseases, metabolic syndrome, 
diabetes, and obesity [49]. This suggests potential func-
tional tradeoffs at this locus; however, proving the envi-
ronmental drivers of past selection is challenging.

Some of the phenotype associations we discovered 
may reflect manifestations of variation on traits in mod-
ern environments that could not be long-term drivers of 
balancing selection. As an extreme example, influence on 
smoking behavior could not have been the cause of LTBS 
given the relatively recent wide availability of nicotine. 
Though we note that there is some evidence of ethanol 
consumption in chimpanzees [39]. Even if they reflect 
modern environments, these associations provide hints 
about possible behavioral, neurological, or other traits 
that may have driven LTBS. For instance, plant chemi-
cals can hijack reward systems in the brain that motivate 
repetition and learning [50]. The same systems that influ-
ence these actions and consequently reproductive fitness 
could potentially be a byproduct of excessive seeking of 
dopamine or other reward chemicals.

There are several caveats to our work. First, fac-
tors other than LTBS, such as high mutation rates and 
sequencing errors, can produce signals similar to those 
of LTBS. However, our use of additional evidence from 
balancing selection detection methods, and filters by 
evidence of ancient origins or the presence of multi-
ple cbSPs in the regions we considered strongly sug-
gest LTBS. Nonetheless, candidate regions of interest 
for future study should be further analyzed for possible 
confounders. Moreover, additional approaches for iden-
tifying signatures of LTBS have recently been developed. 
For example, the  T2,trans statistic has been shown to have 
higher power than single species metrics in many sce-
narios [2]. Considering this metric in the definition of 
cbSPs only identified one additional locus (defined by 
rs16872492, rs114975228), and it did not have clear 
functional annotations. Future work will likely identify 
additional candidate regions that could be characterized 
using our approaches.

Even with recent growth of genetic and phenotypic 
databases, our knowledge of the functions of most 
regions of the genome is sparse. Thus, failure to observe 
a functional association does not imply that a region 
does not have an important function. The genome- and 
phenome-wide association tools we used are limited to 
the samples that have been analyzed; available data do 
not represent the full scope of human variation. Most of 

the individuals analyzed in available genetic association 
studies are of European ancestry [51]. Variant functions 
and the ability to detect associations vary across human 
populations; however, we anticipate that SPs should have 
functional effects across populations, unless modern 
environments have masked the pressure driving LTBS. 
Even  in PheWAS, a limited number of phenotypes have 
been quantified across individuals, and these studies 
are focused on a subset of clinically relevant rather than 
evolutionarily relevant traits. To expand the potential to 
identify candidate functions, in some analyses we consid-
ered annotations based on trait associations with variants 
in high LD  (r2 > 0.8) with cbSPs. This could potentially 
introduce false positives if the variant also tags a different 
causal variant that is not subject to LTBS. However, these 
associations would still implicate the regions with signa-
tures of LTBS in the associated functions, but functional 
studies are needed to confirm the role of the candidate 
variants in these associations. Finally, our analyses have 
focused on the human context. Due to lack of functional 
data, it is not possible to explore the function of cbSPs 
in chimpanzees. Nonetheless, we feel that our integration 
of genome-scale annotations and biobank data highlights 
the diversity of functions associated with LTBS.

Conclusions
In conclusion, we assign putative functions to many non-
coding haplotypes carrying human-chimpanzee SPs that 
likely persisted due to balancing selection dating back 
to at least their common ancestor. These annotations 
expand beyond immune functions to traits relevant to 
behavior, cognition, and body shape. Notably, we also 
find that most regions with multiple cbSPs overlap gene 
regulatory annotations suggesting balancing selection on 
gene expression levels. As methods improve for quantify-
ing the effects of variants on gene regulation in different 
tissues and how these relate to organism-level pheno-
types, we anticipate deeper mechanistic understanding 
of the functions and potential evolutionary pressures on 
these regions.

Methods
Human‑chimpanzee shared polymorphisms and balancing 
selection scans
The initial set of 125 regions containing 263 human-
chimp shared polymorphisms analyzed in this study 
was published by Leffler et  al. [4]. The set is composed 
of regions that: (1) contain at least two trans-species pol-
ymorphisms—i.e., variants that are segregating in both 
51 Yoruba individuals in the 1000 Genomes Pilot 1 and 
10 chimpanzees from the PanMap project—within 4  kb 
of each other in both species, and (2) are in high LD in 
humans and chimpanzees.
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We overlapped the shared polymorphism (SP) regions 
with balancing selection candidate regions from two 
different methods developed to detect balancing selec-
tion. BetaScan2 [19] is a statistic for detecting balancing 
selection based enrichment for variants in a region with 
low variation in allele frequency and a deficit of substi-
tutions. We identified overlaps between the SP regions 
and genomic regions detected by BetaScan2. Among 
the regions with Beta scores, 48% (60/125) had a SP with 
value greater than the 2.0 standardized beta score thresh-
old used by the authors. We also computed overlap with 
regions identified by the NCD statistic [1]. The overlap 
with the regions detected by NCD containing evidence 
from at least one population is 14% (18/125 regions). In 
total, 48% (60/125) of the SP regions were supported by 
either the BetaScan2 or NCD. We refer to the resulting 
set of 60 regions as candidate balanced shared polymor-
phism (cbSP) regions.

Candidate trans‑species polymorphisms
We further filtered the cbSP set to find high-confidence 
candidate trans-species balanced shared polymorphisms 
(ctSPs). To achieve this, we first selected all cbSP regions 
that contain three or more SPs, since this is estimated 
to substantially reduce the false positive rate [22]. We 
additionally considered time to more recent common 
ancestor (TMRCA) predictions for the cbSPs from an 
ancestral recombination graph method, ARGweaver [23]. 
ARGweaver reconstructs the recombination history of a 
genomic site and estimates its age. Following the thresh-
old used in the original ARGweaver analysis of LTBS can-
didate regions, we filtered cbSP regions to those that are 
estimated to be 140,000 generations or older, and thus 
approach the human-chimpanzee divergence. The ctSP 
subset contains 19 cbSPs.

To increase our ability to identify trait annotations in 
each locus, we also created an expanded set that includes 
variants in high LD (threshold  R2 = 0.8) with each of the 
SPs as is common in association studies. We computed 
linkage disequilibrium for the SP variants from 1000 
Genomes Project Phase 3 data using the SNiPA Proxy 
Search web tool developed by the German Research 
Center for Environmental Health (https:// snipa. helmh 
oltz- muenc hen. de/ snipa3/). We considered LD in Afri-
can, East Asia, and European populations. Variants with 
no reported RSID name were excluded from the analysis. 
The dataset was thus expanded by 6,038 SNPs in high LD 
with the cbSPs for a total of 6,171 SNPs.

Genome‑ and phenome‑wide associations
The GWAS Catalog (https:// www. ebi. ac. uk/ gwas/) 
collects variant-trait associations from published 

genome-wide association studies. The database is cur-
rently composed of more than 200,000 associations. 
We used the GWAS Catalog (download date: Decem-
ber 2021) to find functional associations for the LTBS 
variants. The search was done using the BEDTools inter-
sect function between the GWAS catalog and the LD-
expanded SP dataset [52].

We performed an enrichment analysis for Experimen-
tal Factor Ontology (EFO) trait categories associated 
with cbSPs in the GWAS catalog using a binomial test 
based on the background probability of each category 
across the full catalog. We apply a Bonferroni correction 
for the number of EFO terms tested (0.05/394 categories 
tested). However, given the small number of associations 
with any specific trait, relative enrichment is challenging 
to quantify.

PheWAS is an analysis strategy built on top of medi-
cal records with information about patient phenotypes 
and associated variants. The geneAtlas (http:// genea tlas. 
roslin. ed. ac. uk/) and the NealeLab (http:// www. neale lab. 
is/ uk- bioba nk) catalogs take advantage of the data pro-
vided by the UK Biobank cohort, which contains medi-
cally relevant data from nearly 500,000 British individuals 
of European ancestry. The geneAtlas database contains 3 
million variants in 778 traits and the NealeLab database 
contains more 50,000 variants in more than 4000 phe-
notypes. We matched our set of variants against these 
databases to search for traits associated with balancing 
selection.

GTEx eQTL data
To evaluate potential gene regulatory effects of SPs in 
non-coding regions, we analyzed data from GTEx, a pro-
ject developed to quantify the consequence of genetic 
variation on expression at the tissue level (https:// www. 
gtexp ortal. org/). The GTEx project v8 data have identi-
fied eQTL across 50 tissues based on analyses of nearly 
1000 individuals to identify differential expression 
through SNP variation. The intersection between the SPs 
and LD SNPs and the GTEx eQTL returned a large col-
lection of SPs with evidence of eQTL. To explore the pat-
terns of the cbSPs on regulatory function, we performed 
an enrichment analysis on these results by calculating the 
odds ratio on the number of eQTLs for each tissue in the 
GTEx catalog.

Enrichment for overlap with regulatory regions
We used a permutation framework to calculate whether 
SPs were more enriched for overlap with regulatory 
regions than expected by chance [53]. We quantified the 
number of overlapping SPs for each type of regulatory 
region (open chromatin, promoter, enhancer, promoter-
flanking, CTCF binding site, TF binding site). We then 

https://snipa.helmholtz-muenchen.de/snipa3/
https://snipa.helmholtz-muenchen.de/snipa3/
https://www.ebi.ac.uk/gwas/
http://geneatlas.roslin.ed.ac.uk/
http://geneatlas.roslin.ed.ac.uk/
http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
https://www.gtexportal.org/
https://www.gtexportal.org/
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compared the observed SP overlap to a null distribution 
of expected overlap generated by randomly shuffling 
the regulatory regions 1000 times across the genome. 
We maintain the original length and chromosome dis-
tributions for shuffled regions and exclude all ENCODE 
blacklist and gap regions [54], as well as the human MHC 
locus, since SPs in this region were excluded from the 
Leffler et al. set. We then computed an empirical p-value 
for the observed SP overlap based on the distribution of 
overlaps for the set of matched shuffled regions.
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Additional file 1: Figure S1. Human‑chimpanzee shared polymorphisms 
(SPs) previously reported as candidate targets of long‑term balancing 
selection (LTBS). Schematic showing the criteria used by Leffler et al. 
(2013) to identify SPs likely maintained by LTBS. Each line represents a 
chromosome with polymorphisms segregating in a species. A/A’ are two 
alleles segregating in both humans and chimpanzees at one site (i.e., an 
SP), and B/B’ are two alleles segregating in both species at a nearby SP site. 
SPs are very unlikely to appear nearby (within 4 kb) without the action of 
balancing selection. Within these regions, multiple functional scenarios 
are possible. For example, one SP may be under LTBS while the other is 
neutral, but maintained due to tight linkage. Alternatively, the SPs may 
have epistatic functions and both be under selection. Figure S2. SNPs in 
LD with candidate balanced shared polymorphisms (cbSPs). We consider 
60 regions containing 133 cbSPs. For each of these SNPs we find variants 
in high LD  (R2 >= 0.8). As a result, we obtain an additional 6,038 LD vari‑
ants from the 1000 Genomes Project. Counts include LD SNPs and cbSPs. 
Figure created with www. biove nn. nl. Figure S3. Enrichment analysis of 
cbSP in annotated regulatory regions. cbSPs overlap more enhancers pro‑
moters, and open chromatin regions and fewer CTCF binding sites than 
expected compared to length‑ and chromosome‑matched non‑coding 
regions from the genomic background. However, these signals were not 
statistically significant. Enrichment was tested in the cbSP haplotype 
region (A) and in the LD region (B). Since variants in CTCF regions are likely 
to influence regulation of many genes in many tissues (e.g., compared to 
enhancers which are often context‑specific), this suggests that individual 
cbSPs may be less pleiotropic than expected by chance.  C) The propor‑
tion of LD variants observed in each regulatory feature type (bottom) and 
genome‑wide (top). Figure S4. Enrichment analysis of GWAS phenotype 
categories. (Top) We performed an enrichment analysis on the GWAS 
phenotype categories (EFOs) and found significant enrichment in many 
of the categories. Bars colored in gray meet a significant threshold of 0.05 
P‑value (binomial test), and bars colored in black pass a Bonferroni correc‑
tion. (Bottom) The most enriched GWAS EFO categories include blood and 
immune related traits, and also cognitive, smoking status, and uric acid 
related traits, including urate levels and gout. All the categories represent 
a significant enrichment under a Bonferroni correction (binomial test). 
However, we note that the absolute number of associations driving these 
enrichments are very small.

Additional file 2:  Table S1. List of candidate balanced shared poly‑
morphisms (cbSPs), including subset of candidate trans‑species shared 
polymorphisms(ctSP). Table S2. cbSPs and SNPs in high LD (R2 >= 0.8). 
Table S3. Summary table of the variants in this study, statistics, and 
associations. Table S4. Regulatory (VEP) association results for set of cbSPs 
and SNPs in high LD (R2 >= 0.8). Table S5. Regulatory region permuta‑
tion test. Table S6. GTEx association results for set of cbSPs. The P‑Value 
threshold reported here is 5e‑5. Table S7. Gene Ontology (WebGestalt) 
performed on GTEx genes that contain cbSP eQTLs (Table S6) did not 
return any significan terms. Table S8. GTEx background probability of 
cbSPs. Bonferroni correction values represent: 2‑passed the test, 1‑p‑value 
above 0.05, 0‑not significant. Table S9. GWAS associations for cbSP and 
LD variants. The P‑Value threshold reported here is 5e‑8. Table S10. 
UKBiobank (geneAtlas and NealeLab) associations for cbSP and LD 
variants. The P‑Value threshold reported here is 5e‑8. Table S11. GWAS 
background probability of cbSPs. Bonferroni values represent: 2‑passed 
the test, 1‑p‑value above 0.05, 0‑not significant. Table S12. cbSPs found 
in association studies from gwasAtlas database. The P‑Value threshold 
reported here is 5e‑8.
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