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Abstract 

Background: Dinosaur eggs containing embryos are rare, limiting our understanding of dinosaur development. 
Recently, a clutch of subspherical dinosaur eggs was discovered while blasting for a construction project in the Upper 
Cretaceous red beds (Hekou Formation) of the Ganzhou Basin, Jiangxi Province, China. At least two of the eggs con‑
tain identifiable hadrosauroid embryos, described here for the first time.

Results: The eggs, attributable to Spheroolithidae indet., are thin‑walled and small (~ 660 mL) compared to those of 
Lambeosaurinae. The shape of the embryonic squamosal is reminiscent of that seen in the Late Cretaceous hadrosau‑
roids Levnesovia transoxiana, Tanius sinensis, and Nanningosaurus dashiensis, suggestive of possible affinities.

Conclusion: The small size of the eggs and embryos, similar to those of Hadrosaurinae, indicates that the larger eggs 
and hatchlings typical of Lambeosaurinae are evolutionarily derived.
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Background
Dinosaur eggs are common worldwide, but embryos 
are rare [1]. Among the diverse duck-billed dinosaurs 
and their nearest relatives (Hadrosauroidea), just three 
identifiable species are known from perinatal material: 
Hypacrosaurus stebingeri [2], Maiasaura peeblesorum [3, 
4], and Saurolophus angustirostris [5]. Accordingly, the 
early ontogeny of hadrosauroids is poorly understood, 
which hinders determination of skeletal development and 
allometric trends across the clade.

Recently, a construction project in the Upper Creta-
ceous red beds of the Ganzhou Basin, Jiangxi Province, 
China revealed a fossilized clutch of spheroolithid eggs. 
In this contribution, we briefly describe two of these 
eggs and their embryonic contents, accessioned at the 

Yingliang Stone Natural History Museum (YLSNHM) in 
Fujian Province, China. The embryos (YLSNHM 01328 
and 01373) share several features in common with had-
rosauroids, but otherwise lack the more derived features 
present in embryonic hadrosaurids. The squamosal is 
distinctive and recalls that of some other Late Cretaceous 
hadrosauroids, the implications of which we explore here. 
We end this contribution with a consideration of the evo-
lutionary and taphonomic implications of these eggs and 
their contents.

A comment on taxonomy
Hadrosauridae is traditionally split into two subfami-
lies, the solid-crested Hadrosaurinae and hollow-crested 
Lambeosaurinae [6], the former named after the epony-
mous Hadrosaurus foulkii. However, in a relatively recent 
phylogenetic analysis, Prieto-Marquez [7] recovered 
Hadrosaurus as the sister taxon to all other hadrosaurids, 
and so, abiding by the regulations of the International 
Code of Zoological Nomenclature, renamed the clade of 
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solid-crested hadrosaurids Saurolophinae. Although this 
new name has gained some acceptance in the literature 
(e.g., [8–10]), not all current phylogenies recover Had-
rosaurus apart from the solid-crested hadrosaurids (e.g., 
[11, 12]). Therefore, in keeping with tradition and some 
recent phylogenies, we use the clade name Hadrosauri-
nae, which is practically synonymous with Saurolophi-
nae, except for the inclusion of Hadrosaurus [13].

Geological provenance
The red beds of the Ganzhou area of Jiangxi Province are 
divided into: (1) the Upper Cretaceous Ganzhou Group, 
consisting of the Maodian and Zhoutian formations, and 
(2) the Cretaceous-Paleogene Guifeng Group, consisting 
of the Upper Cretaceous Hekou and Tangbian forma-
tions and the Cretaceous-Paleogene Lianhe Formation 
[14]. The eggs and embryos reported here come from the 
Hekou Formation of the Guifeng Group in the Ganzhou 
area (Fig. 1).

The Hekou Formation varies in thickness between 
200 and 1600  m, depending on where it is exposed. It 
consists of channelized, fining-upward conglomerates, 
sieve deposits, and alternating sandstone and mudstone 
beds. The depositional setting is interpreted as primar-
ily fluvially-derived within a proximal alluvial fan system. 
Mudcracks and caliche deposits are common, and the 
prevailing palaeoclimate is interpreted as subhumid [15].

The age of the Hekou Formation is debated. Some 
have argued for a Coniacian-Santonian age for the for-
mation [16], but a Maastrichtian age is more commonly 
accepted. The latter interpretation is based partly on pal-
aeomagnetic studies that have dated the host Guifeng 
Group to 71.4–65.0 Ma [17, 18]. Some have also argued 
that the Guifeng Group is penecontemporaneous with 
the red beds of the nearby Nanxiong Group [19], which is 
purportedly of Maastrichtian age [20]. In this model, the 
Hekou Formation is thought to correlate with the Dafeng 
and Yuanpu formations of the lower Nanxiong Group 
[21]. Indeed, the preserved theropod assemblage of the 
Nanxiong Group, including alioramine tyrannosaurids 
and oviraptorosaurs [22, 23], agrees well with the dino-
saur assemblage of the Nemegt Formation in Mongolia, 
which itself is often considered Maastrichtian in age [24]. 
For these reasons, and in keeping with the recent litera-
ture (e.g., [25, 26]), we accept a probable Maastrichtian 
age for the Hekou Formation.

The Hekou Formation has thus far yielded fossil algae, 
plants, dinosaur bones, and trackways, few of which 
have been formally described [14, 25–29]. Dinosaur 
eggs assigned to Oolithes sp., Oolithes spheroides [30], 
“Spheroolithus minor”, Ovaloolithus sp., Paraspherooli-
thus sp., Macroolithus rugustus, Coelurosauria fam. 

et gen. indet. [27], and Elongatoolithidae [26] are also 
known from the Hekou Formation.

Results
Description of eggs
Each embryo described here is preserved within its 
respective egg, both of which came from the same egg 
clutch. Field records note the presence of at least 13 eggs 
in the clutch at the time of excavation, but the original 
number may have been higher (S Miao, pers. comm. to 
LX, 2008).

The better-preserved egg of YLSNHM 01373 has the 
shape of a prolate spheroid (Fig. 2A), comparable to the 
spherical-subspherical eggs assigned to the oofamily 
Spheroolithidae [31], which has been reported previously 
from the Hekou Formation as “Spheroolithus minor” [27], 
a nomen nudum. Given the cross-sectional dimensions 
of the egg, we estimate a total egg volume of approxi-
mately 600 mL. Viewed in cross-section, the embryo fills 
approximately 40% of the egg by area.

The eggshell of YLSNHM 01373 is poorly preserved 
and thus hinders our detailed description and further 
assignment to an oogenus. While hadrosaurids have long 
been associated with spheroolithid eggs based on their 
embryonic contents [2, 4, 32, 33], the association remains 
questionable due to the poor preservation of the eggshell 
and the absence of detailed description of the eggshells 
in previous reports [e.g., 2, 4]. The YLSNHM 01373 egg 
reveals an indistinct boundary between the mammillary 
and continuous layers (Fig. 2B), indicating its two-layered 
structure—a common microscopic feature for dinosau-
rian eggs. The organic cores (nucleation site for the acic-
ular radial crystal growth in the lower part) are poorly 
circumscribed, probably due to severe embryo-induced 
erosion or poor preservation (or both). The radial crys-
tals merge into a tabular structure in the external quarter 
of the eggshell. The eggshell of YLSNHM 01373 ranges 
0.32–0.42 mm thick, among the thinnest known for the 
oofamily [34].

Description of embryos
YLSNHM 01328
This partial, articulated skeleton consists of the posterior 
cranium (missing most of the snout), complete cervical 
series, and the anterior-most dorsal vertebrae and associ-
ated ribs (Fig. 3). The bridge of the rostrum has buckled; 
its original profile is obscured. The elongate, paired nasals 
are unfused and broken anteriorly where they reach their 
greatest transverse breadth. In lateral profile, the nasal is 
subtly bowed dorsally above the naris. The squamosal has 
disarticulated from the postorbital. The postorbital pro-
cess of the squamosal is tall, blunt, and constricts where 
it meets the main body of the element. The pre- and 
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postcotylar processes are subequal in length. The squa-
mosal compares most favourably with those of the had-
rosauroids Tanius sinensis [35], Levnesovia transoxiana 
[36], and Nanningosaurus dashiensis [37]. By contrast, 
the postorbital process of the squamosal is much longer 
and slenderer in most other hadrosauroids, including 
Gobihadros mongoliensis [38], Prosaurolophus maximus 

[39], and Corythosaurus casuarius [40] (Fig.  4). The 
anterior third of the left maxilla is missing, whereas the 
preserved portion is 14 mm long. Whether a palatal pro-
cess of the maxilla (sensu [41])—whose absence is diag-
nostic of Lambeosaurinae—originally existed cannot be 
determined. The jugal facet of the maxilla faces later-
ally, and its long axis is horizontal as in the perinates of 

Fig. 1 Map showing location of the embryo‑bearing egg specimens, YLSNHM 01328 and 01373 (“Fossil site”) in southern China
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Maiasaura peeblesorum, whereas the same facet is dis-
tinctly angled in those of Hypacrosaurus stebingeri [2]. 
The partial maxilla has eight teeth in situ (there is a total 
12 maxillary teeth in embryonic H. stebingeri; [2]). Each 
has a straight primary (median) ridge, offset slightly dis-
tally, and lacks both subsidiary ridges and marginal den-
ticles (Fig. 5), as in the perinates of M. peeblesorum [42]. 
The occlusal surfaces of the teeth are not visible, hinder-
ing determination of whether they bear wear facets as 
they do in the embryos of H. stebingeri [2]. The quad-
rate (17 mm tall) is robust with a broadly rounded head 
that articulates dorsally with the squamosal in a hinge 
joint. The pterygoid flange is broad, and the quadratoju-
gal notch, largely obscured by the quadratojugal, occurs 
in the lower half of the quadrate body. The quadrate is 
gently bowed anteriorly along its length; the dorsal and 
ventral halves form an angle of approximately 154°. The 
ossified braincase elements are unfused and have been 
displaced; the basisphenoid now rests against the skull 
roof and the orbitosphenoid has shifted posteriorly. The 
prootic is visible beneath the basisphenoid, where the 
single opening for c.n. V (trigeminal nerve) can be seen. 
The otoccipital (opisthotic + exoccipital) occurs further 

posteriorly. On the occiput, the well-developed paroc-
cipital process is pendant and projects posterolaterally 
beneath the squamosal.

The cervical series is nearly complete and preserved in 
a gentle sigmoid along its length, being dorsiflexed ante-
riorly and ventroflexed posteriorly. The neurocentral 
sutures are unfused. The neural spines are low, whereas 
the postzygapophyses are strongly developed and 
hooked, both of which are common to all hadrosauroids. 
The postzygapophyses do not extend above the level of 
the neural spines as they do in adult hadrosaurids (e.g., 
[43, 44]). Many of the transverse processes have buck-
led ventrally, obscuring their corresponding centra. The 
few remaining cervical ribs are L-shaped, with elongate 
posterior processes. The transition between the cervi-
cal and anterior dorsal series is nearly indistinguishable. 
We tentatively identify the first dorsal as that bearing 
the first preserved elongate rib, which itself is broken 
along its length. As such, we identify 12 cervical verte-
brae, although the count may have been higher by one or 
two vertebrae (depending on whether the first preserved 
long rib reached the sternum or not). For comparison, 
the cervical series contains 11 vertebrae in most known 
non-hadrosaurid hadrosauroids [38, 45, 46], and varies 

Fig. 2 Eggshell of Spheroolithidae sp. (YLSNHM 01373). A Overview 
of egg containing embryonic hadrosauroid; B cross‑section of the 
YLSNHM 01373 eggshell under transmitted, unpolarized light. The 
dotted line marks the boundary between the mammillary (ML) and 
continuous (CL) layers. The white arrows indicate the locations of 
organic cores

Fig. 3 Hadrosauroid partial embryonic skeleton (YLSNHM 01328). A 
Photograph, B interpretive drawing. See text for list of abbreviations
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between 12 and 18 vertebrae in hadrosaurids [6, 47]. The 
neural spines of YLSNHM 01328 increase in size and 
posterior inclination by the 15th presacral vertebra, but 
the dorsal series is not preserved beyond the 17th presa-
cral vertebra.

YLSNHM 01373
This articulated skeleton is lacking parts of the skull, dis-
tal limb elements, and tail (Fig. 6). The parietal, which is 
poorly visible in YLSNHM 01328, is elongate (2.7 times 
longer than wide), as in non-lambeosaurine hadrosau-
roids. A partial tooth row has been displaced from the 
jaws and now lies adjacent to the similarly displaced left 
ilium. The dissociation of the teeth from their host ele-
ment makes it difficult to determine whether they origi-
nated within the maxilla or dentary. The morphology of 
the tooth crowns agrees with that of the maxillary teeth 
of YLSNHM 01328. The preserved cervical and dorsal 
vertebrae show unfused neural arches. We consider the 
first dorsal vertebra to be that bearing the first long rib 
that presumably connected with the sternum, in which 
case, we count 11 cervical vertebrae and 18 dorsal ver-
tebrae. However, we can neither confirm the presence of 
the atlas/axis in the preserved series nor rule out the pos-
sibility that the posteriormost free dorsal vertebra would 

eventually become incorporated in the synsacrum as a 
dorsosacral [6]; the true cervical count could be higher. 
The few preserved caudal vertebrae show that the neural 
spines were low. The coracoid foramen is not enclosed 
but opens posteriorly to separate the contact surfaces for 
the humerus and scapula, as in Hypacrosaurus stebingeri 
perinates [2]. The scapular blade is slender and the caudal 
end is irregular and poorly ossified. The length of the del-
topectoral crest of the humerus is moderate compared to 

Fig. 4 Hadrosauriform squamosals in left lateral view. Iguanodon bernissartensis after [58], Gobihadros mongoliensis after [38], Levnesovia transoxiana 
after [36], Nanningosaurus dashiensis after [37], Tanius sinensis after [35], Prosaurolophus maximus after [39], Corythosaurus casuarius after [40]. See text 
for list of abbreviations

Fig. 5 Occluded teeth of YLSNHM 01328. Maxillary teeth (top row) 
exhibit a strong primary (median) ridge and no subsidiary ridges or 
marginal denticles

Fig. 6 Hadrosauroid partial embryonic skeleton (YLSNHM 01373). A 
Photograph, B interpretive drawing. See text for list of abbreviations
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the length of the humerus (ratio = 0.53), which contrasts 
with the condition of most hadrosaurids (ratio > 0.55) 
[6, 7]. The distal condyles of the humerus are poorly 
defined. The left ilium has drifted anteriorly to be pre-
served alongside the skull. It is low in lateral profile, with 
a preacetabular blade that is only weakly arched dorsally. 
The pubic and ischiadic penduncles are poorly defined. 
The femur is 26 mm long, with a well-developed greater 
trochanter and poorly defined distal condyles. The fourth 
trochanter is not visible, on account of the outward rota-
tion of the femur. The preserved tibia and fibula are miss-
ing their extremities.

Discussion and conclusions
The embryos described here can be confidently assigned 
to Hadrosauroidea based on the following derived fea-
tures (from [7]): (1) large jugal contact of maxilla faces 
strongly laterally; (2) deltopectoral crest of humerus wide 
relative to minimum width of humeral shaft (ratio = 1.71). 
Dentary teeth having a centrally located primary ridge 
and lacking subsidiary ridges are also considered derived 
for hadrosauroids [7], and while these features are pre-
sent on the maxillary teeth of the embryos described 
here, we are unable to confirm their occurrence specifi-
cally on the dentary teeth (the dentary tooth crowns are 
not visible in YLSNHM 01328, and the loose teeth of 
YLSNHM 01373 are not definitively from the dentary).

Derived features that would allow the embryos to be 
assigned to Hadrosauridae (see synapomorphies listed 
in [7]) are lacking. For example, in hadrosaurid adults 
and embryos, the maxilla often features a well-defined 
ectopterygoid ridge [2, 36], which is missing in YLS-
NHM 01328. Hadrosaurids of all stages of development 
also possess a deltopectoral crest of the humerus that is 
both proximodistally elongate and exhibits a pointed dis-
tal corner [2, 5, 42, 48]; this is not the case in YLSNHM 
01373. The parietal and nasals are also long compared to 
the condition seen in lambeosaurines (although parietal 
length is negatively allometric over the course of lam-
beosaurine ontogeny; [7]). Many definitive hadrosau-
rid characters are associated with the ilium. However, 
these characters typically relate to the pubic and ischial 
peduncles that bound the acetabulum, which is poorly 
preserved in YLSNHM 01373, and so these characters 
cannot be properly assessed. The relatively high cervical 
count (12 +) that we report in the embryos is consistent 
with that of most hadrosaurids [6], but cervical count 
does not unambiguously diagnose Hadrosauridae [7].

The squamosal of YLSNHM 01328 is distinctive in hav-
ing a relatively tall, blunt postorbital process, which is 
also seen in the hadrosauroids Levnesovia transoxiana, 
Nanningosaurus dashiensis, and Tanius sinensis (Fig.  4). 
Further comparison with these taxa is complicated by the 

fact that none are very complete and that all are known 
from osteologically mature individuals. The holotype of 
Levnesovia transoxiana is represented by a partial skull 
and scattered postcranial elements [36]. Most notably, 
the teeth differ from those of the embryos described 
here in having denticulate crown margins and weak sec-
ondary ridges (the latter on the dentary teeth only). The 
holotype of Nanningosaurus dashiensis consists of scant 
skull and postcranial remains [37]. The dorsal process of 
the maxilla differs from that of YLSNHM 01328 in being 
sharply peaked. The maxillary teeth primarily differ from 
those reported here in being more numerous and nar-
rower mesiodistally, both characters known to vary with 
age in the hadrosaurid Hypacrosaurus stebingeri [2]. The 
dentary teeth of N. dashiensis bear secondary ridges and 
marginal denticles, but these features cannot be con-
firmed in YLSNHM 01328 because the dentary tooth 
crowns are obscured by the overlying maxillary teeth. 
The isolated tooth row preserved with YLSNHM 01373 
cannot be confidently ascribed to the dentary to facilitate 
comparison with N. dashiensis. The holotype of Tanius 
sinensis consists of a posterior cranium, varied appen-
dicular bones, a series of ten cervical vertebrae (complete 
count unknown), and a few other axial elements [35]. No 
extant diagnosis exists for the cranium, and the postcra-
nium is relatively conservative. The dorsal neural spines 
are purportedly tall for a non-hadrosaurid hadrosauroid 
[49], but neural spine height is known to increase with 
age in H. stebingeri [2]. The poor temporal resolution of 
the host Hekou Formation makes it difficult to determine 
whether the described embryos were penecontempora-
neous with any of the other Late Cretaceous hadrosau-
roid taxa just mentioned (and whose temporal ranges 
are sometimes likewise poorly constrained). If we accept 
that the Hekou Formation is of Maastrichtian age (see 
‘Geological provenance’ above), then the hadrosauroid 
embryos may only be penecontemporaneous with T. sin-
ensis, which itself is from somewhere within the upper 
Campanian to lower Maastrichtian [49].The occurrence 
of hadrosauroids in the Hekou Formation is not unprec-
edented. Their presence was initially signaled following 
the description of large ornithopod tracks in Upper Cre-
taceous red beds elsewhere in southern China [50, 51]. 
More recently, Xing et  al. [25] described a partial axial 
skeleton of a hadrosaurid from the Hekou Formation, 
identified on the basis of the long and robust postzyga-
pophyses of the cervical vertebrae. Similarly developed 
processes are not present in the embryos described here, 
supporting the existence of at least two hadrosauroid 
taxa within the Hekou Formation—a hadrosaurid and a 
non-hadrosaurid hadrosauroid.

In describing hadrosaurine and lambeosaurine 
eggs and embryos from Montana, Horner [4] noted 
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that those of hadrosaurines tend to be much smaller 
than those of lambeosaurines. Hadrosaurine embryos 
(Maiasaura peeblesorum) have femora that vary in 
length between 35 and 40  mm, and their subspherical 
eggs were calculated to have a volume of approximately 
900  mL. Lambeosaurine embryos (Hypacrosaurus 
stebingeri and an indeterminate form), by contrast, have 
femora that vary between 60 and 80 mm long, and are 
derived from eggs approaching 4000 mL [2, 4]. Horner 
[4] hypothesized that these differences were typical 
of their respective subfamilies, and further suggested 
that the smaller hadrosaurine hatchlings were altricial, 
based on their poorly ossified epiphyses [3, 52].

The hadrosauroid eggs and embryos reported here 
facilitate character polarization of egg and hatchling 
size among hadrosaurids. The 26  mm femur of YLS-
NHM 01373 is closer to M. peeblesorum perinates in 
size, and the corresponding egg (660  mL) similarly is 
more like those of M. peeblesorum than to those of any 
known lambeosaurine [4]. Importantly, the YLSNHM 
01373 embryo is not fully developed, evidenced by the 
fact that the skeleton does not entirely fill the egg [cf. 
54]. This likely explains the missing ends of the tibia-
fibula, which ossify from the diaphyses outward, and 
the absence of many of the manual and pedal elements 
in an otherwise mostly undisturbed skeleton; they may 
simply not have ossified by the time of death [54]. It is 
probable, therefore, that these embryos were yet several 
embryonic stages away from hatching (Fig.  7). Conse-
quently, we are unable to determine whether the corre-
sponding neonates were altricial, given the incomplete 
development of the embryo. However, in the closely 
related Telmatosaurus transsylvanicus, the hatchlings 
are similarly small and their limb bone epiphyses are 
poorly formed [55], as in M. peeblesorum. These obser-
vations strongly imply that the lambeosaurine condi-
tion of having larger eggs and precocial hatchlings is an 
evolutionarily derived trait.

Dinosaur eggs and embryos commonly occur in semi-
arid, upland palaeoenvironments [1]. Palaeontologists 
once maintained that these were the preferred nesting 
grounds of dinosaurs [32, 56], but rare perinatal bones 
have also been found in lowland deposits (e.g., [48, 57], 
and it is now widely held that the wet, acidic conditions 
of such palaeoenvironments exerted a bias against the 
preservation of eggs and their contents [57]. The Hekou 
Formation of China, with its diversity of fossil dinosaur 
eggs combined with sedimentological indicators of mod-
erately dry, well-drained conditions (e.g., caliche, mud-
cracks, carbonate nodules), is entirely consistent with 
this framework of understanding. These strata promise to 
reveal many more clues about early ontogenetic develop-
ment in dinosaurs.

Methods
Eggshell histology
A piece of eggshell was removed from YLSNHM 01373 
with an Engraving Pen AT-310. The shell was embed-
ded in Araldite 2020, cut with a STX-202A diamond wire 
cutting machine, and then polished with P400 to P4000 
abrasive paper to approximately 30 μm thick for micro-
scopic observation under normal and cross-polarized 
light with a Zeiss Primotech microscope.
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