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divergence of scales in haplochromine cichlids
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Abstract 

Background: Elasmoid scales are one of the most common dermal appendages and can be found in almost all 
species of bony fish differing greatly in their shape. Whilst the genetic underpinnings behind elasmoid scale develop-
ment have been investigated, not much is known about the mechanisms involved in moulding of scales. To inves-
tigate the links between gene expression differences and morphological divergence, we inferred shape variation of 
scales from two different areas of the body (anterior and posterior) stemming from ten haplochromine cichlid species 
from different origins (Lake Tanganyika, Lake Malawi, Lake Victoria and riverine). Additionally, we investigated tran-
scriptional differences of a set of genes known to be involved in scale development and morphogenesis in fish.

Results: We found that scales from the anterior and posterior part of the body strongly differ in their overall shape, 
and a separate look on scales from each body part revealed similar trajectories of shape differences considering the 
lake origin of single investigated species. Above all, nine as well as 11 out of 16 target genes showed expression dif-
ferences between the lakes for the anterior and posterior dataset, respectively. Whereas in posterior scales four genes 
(dlx5, eda, rankl and shh) revealed significant correlations between expression and morphological differentiation, 
in anterior scales only one gene (eda) showed such a correlation. Furthermore, eda displayed the most significant 
expression difference between species of Lake Tanganyika and species of the other two younger lakes. Finally, we 
found genetic differences in downstream regions of eda gene (e.g., in the eda-tnfsf13b inter-genic region) that are 
associated with observed expression differences. This is reminiscent of a genetic difference in the eda-tnfsf13b inter-
genic region which leads to gain or loss of armour plates in stickleback.

Conclusion: These findings provide evidence for cross-species transcriptional differences of an important morpho-
genetic factor, eda, which is involved in formation of ectodermal appendages. These expression differences appeared 
to be associated with morphological differences observed in the scales of haplochromine cichlids indicating potential 
role of eda mediated signal in divergent scale morphogenesis in fish.

Keywords: Scale morphology, Gene expression, Adaptive radiation, East African lakes, Lake Tanganyika, Lake Malawi, 
Lake Victoria, African cichlids
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Background
Cichlids pose a great a model system for evolutionary 
biology, as they include some of the most striking exam-
ples of explosive adaptive radiation and many aspects 
of their life history as well as their behaviour, coloration 
and feeding morphologies are well studied [1–3]. One 
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of the most remarkable features is their repeated evolu-
tion of parallel eco-morphologies, especially across the 
radiations of the three East African Great Lakes, Lake 
Tanganyika (LT), Lake Malawi (LM) and Lake Victo-
ria (LV) [4, 5]. These ecological adaptations are also the 
focus of many studies, as they promise the opportunity 
to shed light on different molecular mechanisms underly-
ing repeated evolution and diversification [6, 7]. Regard-
ing skeletal morphogenesis in particular the evolution 
of their jaws and their phenotypic plasticity are topics 
of ongoing research [7–12]. However, while the adaptive 
value of some of the investigated structures (e.g., feed-
ing apparatus) can be more easily connected to certain 
ecological specializations [5, 13], this is not so obvious in 
others, such as scales.

Fish scales come in a vast array of different shapes and 
forms. As a part of the dermal skeleton, which amongst 
other structures also includes teeth, odontodes, spines 
and fin rays, these postcranial derivates evolved into 
morphologically and histologically diverse structures in 
Actinopterygii [14, 15]. Elasmoid scales, found in most 
of teleost species, form in the dermal mesenchyme and 
are mainly used for protection and hypothetically for 
hydrodynamic modifications [14, 16, 17]. While the 
elasmoid scales form relatively late in ontogeny and can 
take diverse forms, they share a composition consisting 
of three tissues, with elasmodin as the basal component 
formed in a characteristic plywood-like structure [15, 
16]. Scale development, mostly studied in zebrafish, has 
been found to be orchestrated by several well-known 
pathways, including Hh, Fgf and Eda [16, 18–20], which 
are known to be also involved in the appendage forma-
tion across several vertebrate groups [21]. Mutations 
and allele variations in the Eda/Edar pathway, for exam-
ple, have been linked to fish fin, scale and armour plate 
development as well as human and mouse hair and teeth 
growth [19, 22, 23]. Nevertheless, besides a recent exten-
sive comparison of the scale morphology across Lake 
Tanganyika cichlids [24], as well as a genetic study of 
scale shapes in two closely related Lake Malawi cichlids, 
which tied FgF signalling to scale shape variation [20], 
not much is known about the molecular mechanisms 
shaping the elasmoid scale.

In this study, we investigate the morphological dif-
ferences in the anterior and posterior scales of ten hap-
lochromine cichlid fish species from three Great East 
African Lakes, i.e., Lake Tanganyika (LT), Lake Malawi 
(LM) and Lake Victoria (LV) as well as a riverine hap-
lochromine cichlid species. After identification of a stably 
expressed reference gene, we also investigate transcrip-
tional differences of a set of genes known to be involved 
in scale development and morphogenesis in fish. Finally, 
we tried to find links between the gene expression 

differences and morphological divergence in both ante-
rior and posterior scales. Our results provide cross-
species expression comparisons of scale related genes in 
haplochromine cichlids and implicate expression differ-
ences by which formation of distinct scale morphologies 
might be determined.

Methods
Fish husbandry and sampling
Ten haplochromine cichlid species; three species from 
Lake Tanganyika, four species from Lake Malawi, two 
species from Lake Victoria, and one riverine haplochro-
mine species, were selected for this study (Fig.  1A). For 
each species, the first generation siblings of wild-caught 
fish from the aquarium trade were bred and raised in 
standardized tanks and rearing conditions with the same 
diet (Spirulina flakes) until they displayed mating behav-
iour. Between five to 11 adult males per species were 
sampled for morphological analysis and four adult males 
were sampled for gene expression investigation. The sam-
pled fish species were sacrificed by euthanization with 
0.5 g MS-222/litre of water, and five anterior and poste-
rior scales from left side of the body were removed for 
morphological analysis (Fig.  1B), whereas similar num-
bers of scales (together with their attached covering 
epidermis) were taken from both sides and all anterior 
or posterior scales from each fish were pooled for gene 
expression analysis.

Morphological analysis
To infer shape differences of scales from divergent Afri-
can cichlids from different lakes a 2D geometric mor-
phometric framework was deployed. Due to major 
morphological differences of the scales they were sepa-
rately investigated for the anterior and posterior part 
of the body (Fig.  1 B and C). Standardized images of 
scales were taken with a KEYENCE VHX-5000 digi-
tal microscope (KEYENCE Germany GmbH). 84 adult 
specimens from 10 cichlid species inhabiting the three 
major rift lakes which were reared under standardized 
aquarium conditions (Astatotilapia burtoni = 7; Neo-
chromis omnicaeruleus = 10; Petrochromis famula = 11, 
P. polyodon = 7; Paralabidochromis sauvage = 5; Simo-
chromis diagramma = 11; Sciaenochromis fryeri = 5; 
Tropheops tropheops = 9; Labeotropheus trewavasae = 9; 
Mz: Maylandia zebra = 10) were included for the geo-
metric morphometric analyses. For each individual six 
scale replicates from the anterior and posterior part of 
the body were probed (Fig. 1B), leading to a total of 1.008 
investigated scales. After randomizing pictures in tpsUtil 
v.1.6 (available at http:// life. bio. sunysb.edu/morph/soft-
utility.html), landmark digitization was conducted on a 
set of seven fixed landmarks and 14 semi-landmarks (see 

http://life.bio
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Fig. 1b for positions) in tpsDig v.2.26 (available at http:// 
life. bio. sunysb. edu/ morph/soft-utility.html). To ensure 
consistency, this step was conducted by a single investi-
gator. Generalized Procrustes superimposition [25] was 
performed in tpsRelw v.1.65 (available at http:// life. bio. 
sunysb. edu/ morph/ soft- utility.html) and aligned land-
mark configurations were exported for further analysis 
in MorphoJ v.1.06 [26]. In MorphoJ, single observations 
obtained from the six replicates were averaged to get the 
mean shape for each landmark. A Principal Component 
analysis (PCA) was applied to infer variation in mor-
phospace among scale position (anterior vs. posterior), 
single specimen, and species. Subsequent analyses were 
based on separated datasets for anterior and posterior 
scale landmark setting, whereas PC-scores were exported 
for linear discriminant function analyses (LDA) in PAST 

v.4.1 [27]. To reduce the number of variables and control 
for putative over-separation of groups [28], only the first 
four principal components were used for the LDA. PCA 
and LDA plots were visualized in R v3.1.2 [29].

RNA isolation and cDNA synthesis
As mentioned in the section above, for isolating the 
total RNA ten anterior and posterior scales from each 
fish were pooled in a single tube containing 0.25  mL of 
a tissue lysis buffer from Reliaprep RNA tissue miniprep 
system (Promega, #Z6111, USA) as well as one 1.4  mm 
ceramic bead to crush the scales. The scales were homog-
enized using a FastPrep-24 Instrument (MP Biomedicals, 
Santa Ana, CA, USA) and total RNA was extracted fol-
lowing the instructions provided by the manufacturer 
(adjusted protocol for small amounts of fibrous tissue). 

Fig. 1 The haplochromine cichlid species and descriptions of the scale samples. a A simplified phylogenetic relatedness of the East African 
haplochromine cichlid species used in this study. b Positions of the anterior and posterior scales used in this study and landmarks used for the 
geometric morphometric analyses in both anterior (left) and posterior (right) scales shown as an example for Petrochromis famula. Blue dots 
represent major landmarks, white dots semi-landmarks and 1 mm scale bars are given below the images. c Principal component analysis (PCA) plots 
clearly separate scales from the anterior and posterior part of the body. Additional, warped outline drawings illustrate major shape changes along 
the axis (red) compared to the overall mean shape (grey)

http://life.bio.sunysb.edu/
http://life.bio.sunysb.edu/
http://life.bio.sunysb.edu/morph/soft
http://life.bio.sunysb.edu/morph/soft
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In summary, the instructions proceed with mixing of the 
lysis buffer and homogenized scales with isopropanol and 
centrifuging the entire mix through a column provided 
by the kit, followed by several RNA washing steps and a 
final DNase treatment. The RNAs were quantified by a 
Nanophotometer (IMPLEN GmbH, Munich, Germany) 
and their quality was checked with RNA ScreenTapes 
on an Agilent 2200 TapeStation (Agilent Technologies). 
Next, the RNA samples with a RNA integrity number 
(RIN) above six were applied to first strand cDNA syn-
thesis using 300  ng of RNA and High Capacity cDNA 
Reverse Transcription kit (Applied Biosystems). The syn-
thesized cDNA from each RNA sample was diluted 1:5 
times in nuclease-free water to conduct qPCR.

Gene selection, designing primers and binding site 
predictions
We selected eight candidate reference genes which have 
been frequently used in different studies of Haplochro-
mine cichlids and have shown high expression levels 
in various connective tissues including skeletal tissues 
[10, 30–35]. Furthermore, we chose 16 target candidate 

genes, which are implicated in scale development and 
morphogenesis (Table  1). The primers were designed 
at conserved sequence of coding regions using already 
available transcriptome/genome data of East Afri-
can haplochromine species on www. ncbi. nlm. nih. gov/ 
sra, including Astatotilapia burtoni (SRX4523155), 
Labeotropheus trewavasae (SRX6432658), Metria-
clima zebra (SRX8892877), Neochromis omnicaer-
uleus (SRX8567938), Paralabidochromis sauvagei 
(SRX8892920), Petrochromis famula (SRX6445829), 
Petrochromis polyodon (ERX3501455), Sciaenochromis 
benthicola (ERX1818621), Simochromis diagramma 
(SRX8567938), and Tropheops tropheops (ERX659441) as 
well as two more distant species from different African 
cichlid tribes (Oreochromis niloticus and Neolamprologus 
brichardi) [7, 36–39]. The sequences from all the species 
were imported to CLC Genomic Workbench, version 7.5 
(CLC Bio, Aarhus, Denmark), and after alignment, the 
exon/exon junctions were specified using the Astatoti-
lapia burtoni annotated genome in the Ensembl data-
base (http:// www. ensem bl. org) [40]. The primers were 
designed spanning exon junctions and a short amplicon 

Table 1 Selected target genes involved in the development and/or morphogenesis of scales in teleost fish

Gene Related functions Species References

bmp4 A ligand of the TGF-β superfamily implicated in formation and calcification of elasmoid scale Zebrafish [96]

col1a2 A member of collagen family highly expressed in both developing and adult elasmoid scales 
and responsive to environmental changes

Zebrafish [97, 98]

ctsk A lysosomal cysteine proteinase involved in bone remodeling/resorption and expressed in in 
both developing and adult elasmoid scale and responsive to environmental changes

Zebrafish [82, 83, 98, 99]

dlx5 A homeobox transcription factor involved in bone development and scale formation and 
regeneration and responsive to environmental changes

Zebrafish Goldfish [81–83]

eda edar A tumor necrosis factor and its receptor mediating a signal involved in development of ecto-
dermal organs and playing role in scale formation and morphogenesis

Zebrafish
Medaka
Sculpin
Stickleback

[19, 66, 68, 100, 101]

fgf20 A fibroblast growth factor involved in formation of scale development and morphogenesis Zebrafish [102, 103]

fgfr1 A conserved receptor of fibroblast growth factor involved in formation of
scales during juvenile development and morphological changes of scales in adult

Zebrafish
Carp
Cichlid

[20, 104]

mmp2 mmp9 Members of matrix metalloproteinases involved in development, regeneration and tissue 
remodeling of scale

Zebrafish [105]

opg An osteoblast-secreted decoy receptor that functions as a negative regulator of bone resorp-
tion involved in scale formation and regeneration

Zebrafish goldfish [81, 82]

rankl A ligand for opg and functions as a key factor for osteoclast differentiation bone remodeling 
involved in scale formation and regeneration and responsive to environmental changes

Zebrafish Goldfish [81, 82, 87, 88]

runx2a A transcription factors essential for osteoblastic differentiation and skeletal morphogenesis 
involved in scale formation and regeneration and responsive to environmental changes

Zebrafish Goldfish [81, 83, 106]

sema4d A cell surface receptor involved in cell–cell signaling and scale formation and responsive to 
environmental changes

Zebrafish [82]

shh A ligand of Hedgehog signaling pathway involved in the control of scale morphogenesis in 
relationship with the formation
of the epidermal fold in the posterior region

Zebrafish [16, 89]

sp7 A bone specific transcription factor required for osteoblast differentiation and scale formation 
and regeneration

Zebrafish carp
Goldfish

[81, 89, 107]

http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
http://www.ensembl.org
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size (< 250 bp) as recommended to be optimal for qPCR 
quantification [41]. The primers were designed and 
assessed through Primer Express 3.0 (Applied Biosys-
tems, CA, USA) and OligoAnalyzer 3.1 (Integrated DNA 
Technology) to minimize the occurrence of dimerization 
and secondary structures.

We retrieved downstream sequences (3’UTR and 
inter-genic region) of eda gene for all the species in 
this study from European Nucleotide Archive (ENA) 
and Sequence Read Archive (SRA) in order to iden-
tify changes in potential binding sites. To do this, 
we used genomic sequences of the haplochromine 
species; A. burtoni (GCA_000239415.1), P. famula 
(GCA_015108095.1), N. omnicaeruleus (SRR12700904), 
P. polyodon (GCA_015103895.1), S. fryeri (ERX1818621), 
S. diagramma (GCA_900408965.1), M. zebra 
(GCA_000238955.1), T. tropheops (SAMEA2661272), 
L. trewavasae (SAMN12216683), and P. sauvagei 
(GCA_018403495.1). Next we identify the 3’UTR and 
inter-genic region of eda genes using the annotated 
genome of A. burtoni from Ensembl and aligned them 
using CLC Genomic Workbench. The different sequence 
motifs were identified and screened for potential TF 
binding sites using STAMP [42] and the PWMs obtained 
from the TRANSFAC database [43].

qPCR and data analysis
The qPCR reactions were generated using Maxima SYBR 
Green/ROX qPCR Master Mix (2X) (Thermo Fisher Sci-
entific, Germany) and the amplifications were conducted 
on ABI 7500 real-time PCR System (Applied Biosystems). 
The qPCR setups followed the recommended optimal 
sample maximization method [44]. The qPCR program, 
dissociation step and calculation of primer efficiencies 
were performed as described in our previous study [45] 
(Additional file 1).

Three different algorithms were applied to validate 
the most stable reference genes; BestKeeper [46], Nor-
mFinder [47] and geNorm [48]. The Cq value of the most 
stable reference gene was used as normalization factor 
(Cq reference) to calculate ΔCq of each target gene (ΔCq tar-

get = Cq target – Cq reference). The lowest expressed sample 
in each expression comparison was used as a calibrator 
sample and rest of the samples were subtracted from its 
ΔCq value to calculate ΔΔCq values (ΔCq target – ΔCq 
calibrator). Relative expression quantities (RQ) were calcu-
lated through  E−ΔΔCq [49]. In order to perform statistical 
analysis, fold differences (FD) were calculated by trans-
formation of RQ values to logarithmic values [50]. The 
significant expression differences were calculated using 
ANOVA statistical tests, followed by Tukey’s HSD post 
hoc tests. The correlations between gene expression and 
a morphometric parameter (canonical variate 1) were 

calculated through Pearson correlation coefficients (r) for 
each gene using R.

Results
Divergence in scale morphology
The principal component analysis (PCA) revealed a clear 
separation in overall average individual shape between 
anterior and posterior scales (Fig.  1C). PC1 and PC2 
explained 78.3% and 8.6% of the total shape variation, 
respectively. Generally, on the first axis anterior scales are 
anterior-posteriorly more compressed compared to the 
posterior body part (see deformation grids in Fig.  1C). 
Along the second PC axis changes can be observed in 
the shape of the posterior scale field (narrow vs. wide), 
as well as in the lateral edges of the anterior scale field 
(edges vs. round).

While comparing different species, large variation in 
overall shape can be observed in the dataset which is 
restricted to anterior scales only. Petrochromis famula, 
Maylandia zebra and Sciaenochromis fryeri occupy large 
parts of the morphospace and overall, less intraspecific 
variation can be observed in other species (Fig.  2A). In 
the anterior dataset changes along the PC1 explain 47.1% 
of total variation, and mainly affect the circularity of 
the overall shape (i.e., that scales get more compressed 
towards positive values). Changes along the second PC, 
which explains 19.6% of the total shape variation, affect 
the posterior scale field (compression vs. expansion). 
Compared to anterior scales, less intraspecific shape 
variation can be observed in posterior scales, whereas 
PC1 explains 54.8% and PC2 18.9% of the total variation, 
respectively (Fig.  2B). PC1 separates two major clusters 
(S. diagramma + P. famula vs. rest) whereas changes 
along the axis mainly contribute to a dorso-ventrally ver-
sus anterior–posterior compression of the scale and the 
roundness of the anterior scale field. Along PC2 shape 
changes affect the expansion (or compression) of the 
anterior and posterior scale fields. Generally, the PCA 
only poorly resolves the lake (or phylogenetic) origin 
of the single species for both the anterior and posterior 
dataset.

The linear discriminant function analysis (LDA) of 
anterior as well as posterior dataset correctly classi-
fied 77.38% (jackknifed: 67.86%) and 72.62% (jackknifed: 
65.48%) of species (Fig.  2C, D). The first axis explains 
83.66% and 76.00% variance of the overall shape vari-
ability for the anterior and posterior dataset, respec-
tively. In the anterior dataset, the first LD-axis separates 
three major clusters made up of samples from Lake Tan-
ganyika, the riverine Astatotilapia burtoni and a joint 
Victoria-Malawi cluster. Similar results were obtained 
for the posterior dataset, whereas along the first axis 
the separation between the riverine A. burtoni and the 
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Victoria-Malawi cluster is less prominent. Along the sec-
ond axis, which explains 10.04% and 13.2% of the vari-
ance of the overall shape variability for the anterior and 
posterior dataset, respectively, mainly interspecific and 
intraspecific variation is portrayed. Overall, for the ante-
rior dataset, 83.33% (jackknifed: 75%) of species were 
correctly classified according to the lake origin, whereas 
single classification scores reached values of 100% (jack-
knifed: 85.71%) for A. burtoni, as well as 66.67% (jack-
knifed: 57.58%) for Malawi, 86.67% (jackknifed: 86.67%) 
for Victoria and 96.55% (jackknifed: 86.21%). In total, for 

the posterior dataset, 77.38% (jackknifed: 70.24%) of the 
individuals were correctly assigned to the lake origin, 
with 85.71% (jackknifed: 71.43%) for A. burtoni, as well 
as 66.67% (jackknifed: 54.55%) for Malawi, 53.33% (jack-
knifed: 46.67%) for Victoria and 100% (jackknifed: 100%) 
for individuals from Tanganyika.

Validation of stable reference genes
To quantify the expression levels of the selected target 
genes, the validation of stable reference gene(s) with least 
variation in expression across the anterior and posterior 

Fig. 2 Morphospace of investigated scales from different species and body parts. Principal component analysis based on average shape of scales 
collected for the anterior a and posterior b part of the body and respective shape differences along the axis (grey: overall mean shape; red: shape 
change). Linear discriminant function analysis based on the first four PC-scores for anterior c and posterior d scales. All data points represent 
mean shapes obtained from 6 individually collected scales and shapes represent different lake origins. A.b. Astatotilapia burtoni, N.o. Neochromis 
omnicaeruleus, P.f. Petrochromis famula, P.p. P. polyodon, P.s. Paralabidochromis sauvage, S.d. Simochromis diagramma, S.f. Sciaenochromis fryeri, T.t. 
Tropheops tropheops, L.t. Labeotropheus trewavasae, M.z. Maylandia zebra
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scales of different species is a necessary step [51]. The 
eight candidates were selected from frequently used ref-
erence genes in studies of different tissues in East Afri-
can cichlids [10, 30–35]. The candidate reference genes 
showed variable expression levels in the scales, and from 
highest to lowest expressed were respectively; actb1, 
hsp90a, rps11, rps18, hprt1,gapdh, elf1a and tbp. Interest-
ingly, in both anterior and posterior scales, all the three 
software ranked actb1 as the most stable reference gene 
with lowest expression variation across the cichlid spe-
cies in this study (Table 2). Thus, we used the Cq value 
of actb1 as normalization factor (NF) in each sample for 
quantification of relative expression analyses of the target 
genes.

Gene expression differences between anterior 
and posterior scales
The relative expression levels of 16 candidate target 
genes, bmp4, col1a2, ctsk, dlx5, eda, edar, fgf20, fgfr1, 
mmp2, mmp9, opg, rankl, runx2a, sema4d, shh and sp7, 
were compared between the anterior and posterior scales 
in each of the haplochromine species (Fig.  3). Some of 
these genes such as bmp4, col1a2, rankl and sp7, showed 
almost no expression difference between the anterior 
and posterior scales. Moreover, none of the target genes 
showed consistent expression difference across all the 
species. These indicate potential involvement of various 
genes in morphological divergence between the anterior 
and posterior scales. However, two genes, ctsk and shh 
exhibited expression difference between the anterior and 
posterior scales in most of the species (Fig. 3). The direc-
tions of expression differences between the anterior and 
posterior scales for ctsk and shh were variable depending 
on the species. Interestingly all the three species form LT 
showed higher expression in the anterior scale for shh, 

whereas the all the species from LM and LV showed ten-
dency for opposite pattern with increased posterior scale 
expression. These findings suggest potential role of ctsk 
and shh in morphological divergence of the scales along 
anterior–posterior axis.

Gene expression differences between lakes in anterior 
and posterior scales
Next, we compared the expression levels of the tar-
get genes between the lakes in the anterior or posterior 
scales by considering all the species from each lake as 
one group (Fig. 4). In the anterior scales, nine out of 16 
target genes showed expression differences between the 
lakes including bmp4, ctsk, eda, edar, mmp2, opg, rankl, 
shh and sp7. Most of these differences were between LT 
and the other lakes, and 4 genes, ctsk, mmp2, opg and 
rankl showed higher expression in LT species, while 3 
genes, bmp4, eda and shh showed lower expression LT 
species. Furthermore, 2 genes, ctsk and eda displayed 
the strongest expression differences between the lakes 
in opposite patterns suggesting their role in morpho-
logical divergence of the anterior scales across the lakes 
(Fig. 4). In the posterior scales, 11 out of 16 target genes 
showed expression differences between the lakes includ-
ing bmp4, col1a2, ctsk, eda, edar, fgf20, fgfr1, mmp2, opg, 
rankl, shh and sp7. Again, most of these differences in the 
posterior scales were between LT and the other lakes, 
and five genes, col1a2, ctsk, mmp2, opg and rankl showed 
higher expression in LT species, while three genes, eda, 
fgf20 and shh showed lower expression in LT species. In 
addition, four genes, fgf20, rankl, eda and shh displayed 
the strongest expression differences between the lakes in 
opposite patterns (eda and rankl higher in LT, and fgf20 
and shh lower in LT) suggesting their role in morpho-
logical divergence of the posterior scales across the lakes 

Table 2 Ranking of reference genes in anterior and posterior scales across all of the haplochromine species used in this study

SD indicates a ranking calculation based on standard deviation generated by BestKeeper, whereas SV stability value, and M mean expression stability value, are 
calculated by geNorm and NormFinder, respectively

Anterior scales Posterior scales

BestKeeper geNorm NormFinder BestKeeper geNorm NormFinder

Ranks SD Ranks M Ranks SV Ranks SD Ranks M Ranks SV

1 actb1 0.398 actb1 1.110 actb1 0.478 actb1 0.421 actb1 1.133 actb1 0.435

2 rps11 0.532 rps11 1.168 rps11 0.589 rps11 0.571 rps11 1.174 rps11 0.471

3 rps18 0.745 tbp 1.256 tbp 0.669 tbp 0.804 tbp 1.276 tbp 0.705

4 tbp 0.766 hsp90a 1.379 rps18 0.708 hsp90a 0.829 hsp90a 1.346 hsp90a 0.763

5 gapdh 0.869 rps18 1.396 hprt1 0.871 rps18 0.869 rps18 1.536 rps18 0.812

6 hsp90a 0.882 hprt1 1.590 hsp90a 0.879 gapdh 1.003 gapdh 1.703 hprt1 0.918

7 hprt1 0.929 gapdh 1.631 gapdh 1.227 hprt1 1.089 hprt1 1.729 gapdh 1.215

8 elf1a 1.507 elf1a 1.827 elf1a 1.420 elf1a 1.362 elf1a 1.754 elf1a 1.310
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(Fig. 4). In general, more genes with stronger expression 
differences between the lakes were observed the poste-
rior scales. Several genes such as ctsk, eda, edar, mmp2, 
opg, rankl and shh appeared to have similar patterns of 
expression differences between the lakes in both ante-
rior and posterior scales. Importantly, we found only one 
gene, eda, to have strong differences between the lakes in 
both anterior and posterior scales indicating its poten-
tially crucial role in morphological divergence of the 
scales across the lakes.

Correlation analyses between gene expression 
and morphological divergence in scales
We analysed the correlation between expression of the 
genes and canonical variate 1 in the anterior or pos-
terior scales across the species. Only one gene, eda, 
showed significant correlation in the anterior scales 

(Fig.  5), whereas, in the posterior scales four genes 
including dlx5, eda, rankl and shh displayed significant 
correlations between expression and morphological 
differences (Fig.  6). Among these genes eda exhibited 
the strongest correlation in the posterior scales. How-
ever, the correlation patterns differed between the 
genes in the posterior scales, i.e., eda and shh showed 
positive while dlx5 and rankl had negative correla-
tions with the morphological changes based canonical 
variate 1. Therefore, again only one gene, eda, showed 
significant correlation between its expression and the 
morphological differences in both scales indicating its 
potential role in divergent scale morphogenesis in the 
cichlid species. The opposite correlation patterns in the 
posterior scales might also indicate inhibitory regula-
tory connections between the genes.

Fig. 3 The anterior versus posterior scales expression differences of the candidate target genes in haplochromine cichlids from three East African 
lakes. Comparisons of relative expression levels between anterior versus posterior scales for 16 candidate target genes in different lakes in East Africa 
at young adult stage. Significant differences between the are indicated by red asterisks (*P < 0.05; **P < 0.01). See Fig. 1A for corresponding species 
abbreviations
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Genetic differences in non‑coding sequences of eda gene
Finally, we were interested to investigate genetic dif-
ferences in available regulatory sequences of eda gene 
including 5´UTR, 3´UTR and short but conserved 
inter-genic region between eda and tnfsf13b (immedi-
ate downstream gene) across the species. Interestingly, 
we found two genetic differences (mutations/deletions) 
in 3´UTR and one in eda-tnfsf13b inter-genic region 
to differ between LT species versus LM and LV species 
(Table  3). Next, we parsed the short sequence regions 
containing the mutations/deletions against transcrip-
tion factor binding site (TFBS) databases. We found 
that the two changes in 3´UTR seem to lead to gain-
ing TFBS for transcription factors Mef2 and Tcf1 in the 
LM and LV species, whereas the changes in the inter-
genic region led to gaining TFBS for Lef1 transcrip-
tion factor in the LT species (Table 3). Importantly, the 

riverine species A. burtoni appeared to have intermedi-
ate genetic changes meaning that for the two changes 
in 3’UTR it showed a deletion similar to the LT species 
but a mutation similar to the LV and LM species. Also, 
for the inter-genic change, A. burtoni showed an inter-
mediate mutation between the LT and the other species 
from LM and LV, however, this mutation showed no 
gain of TFBS (similar to the LM and LV species). Taken 
together, these genetic changes showed similarity with 
differences in gene expression and scale morphology, 
where the LT species clustered different from LM and 
LV species and the riverine species (A. burtoni) showed 
intermediate differences. This suggests that the identi-
fied genetic changes might be the underlying factors for 
divergent eda expression as well as differences in the 
scale morphology.

Fig. 4 The lake-based expression differences of the candidate target genes in haplochromine cichlids in this study. Comparisons of relative 
expression levels between the lakes, when all species of each lake were combined, within anterior or posterior scales for 16 candidate target 
genes. Significant differences between the are indicated by red asterisks (*P < 0.05; **P < 0.01; ***P < 0.001). See Fig. 1A for corresponding species 
abbreviations
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Discussion
As river-adapted haplochromine cichlids repeatedly 
seeded adaptive radiations in several East African lakes, 
cichlid fishes recurrently adapted to corresponding 
trophic niches. Thereby, the adaptive value of traits is 
often mirrored by morphological shape parallelism and 
concomitant similar lifestyles which result from paral-
lel evolution [4, 5]. Hence, fishes from the cichlid spe-
cies flocks in various African lakes comprise an exciting 
model to conduct comparative morphological and 
molecular studies. While most previous studies focused 
on bony elements that can easily be linked particular 
trophic niches and divergent natural selection as driver of 
diversification in cichlids (e.g., [52]), other skeletal struc-
tures such as scales might show less obvious adaptive 
trajectories.

Above all, between the three East African Great Lakes, 
the haplochromine cichlids are especially interesting, as 
they share common ancestry and comprise the Tropheini 

at LT and the entire the LV and LM haplochromine radia-
tions [53, 54]. As the lakes have all very different geologi-
cal histories, with Lake Tanganyika being the oldest [55], 
LM the intermediate [56] and LV the youngest of the 
three [57], they also depict three extensive radiations at 
different time points. Thus, depending on the evolution-
ary age of the different lakes, species (and their morphol-
ogies) had more or less time to diverge, despite sharing 
parallels. The more time passes, much more elaborated 
predator–prey and host-parasite relationships can evolve. 
This is manifested by unique ecological and behavioural 
features, particularly in the oldest of the three lakes, LT, 
which contains coocoo-catfish species showing brood 
parasitism [58], dwarfed gastropod shell breeders [59], 
putative cleaning behaviour [60], or highly elaborated 
scale eaters [61] (but also see Genyochromis mento from 
Lake Malawi). Particularly the latter case, scale eating, 
could have influenced the co-evolution of scale morphol-
ogy in host species. Lake Tanganyika’s scale eaters (i.e., 

Fig. 5 Correlation analyses of candidate target gene expressions and the anterior scale morphololgical divergence across the haplochromine 
species. A Pearson correlation coefficient (r) was used to assess the similarity between differences in expression level of the target genes and the 
major canical variate in the anterior scales across all species. See Fig. 1A for corresponding species abbreviations
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Perissodus; Perissodini) show different degrees of spe-
cialization, whereas only the shallow water species, Perri-
sodus microlepis and P. straeleni, feed almost exclusively 

on fish scales while other species are not that specialized 
[4, 61]. The most common prey species of P. microlepis 
are members of the Tropheini and Eretmodini [62]. P. 

Fig. 6 Correlation analyses of candidate target gene expressions and the posterior scale morphololgical divergence across the haplochromine 
species. A Pearson correlation coefficient (r) was used to assess the similarity between differences in expression level of the target genes and the 
major canical variate in the posterior scales across all species. See Fig. 1A for corresponding species abbreviations

Table 3 Identified genetic differences in regulatory sequences of eda gene and predicted binding sites for potential upstream 
regulators

PWD ID indicates positional weight matrix ID of a predicted binding site and E-values refer to matching similarity between the predicted motif sequences and the 
PWD IDs

Region Sequence Species TFBS PWM ID E‑value

eda 3’UTR A----A Ab, Sd, Pp, Pf – – –

AAA AAT AGCTA All the others Mef2 M00941 2.1296e-12

eda 3’UTR GAATA GATT AAC Sd, Pp, Pf – – –

GAATA TATT AAC All the others Tcf1 MA0046.1 2.6516e-06

eda/tnfsf13b Intergenic ACTT T--GCGAG Sd Lef1 M00805 2.4053e-06

ACTT TGACT GCG AG Pp, Pf Lef1 M00805 5.1356e-05

ACTT CGACT GCG AG Ab – – –

ACTT CAACT GCG AG All the others – – –
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straeleni seems to be less specialised to certain prey 
items, but Tropheini scales still make up a major part of 
the gut contents [63]. Based on our dataset (Tropheini 
only) it remains speculative to assume that scale-related 
gene expression and the concomitant morphology might 
reflect an adaptation to reduce the risk of scale preda-
tion. Future studies, including more early branching 
(non-modern) haplochromine cichlids (e.g., Pseudocre-
nilabrus, Thoracochromis, Astatoreochromis) or other 
Tropheini with different lifestyles (e.g., Ctenochromis) 
will be necessary to establish stronger links between scale 
morphology and this unique predation pressure.

Nonetheless, understanding which genetic mecha-
nisms underlie the scale morphology might be the key 
to understand how such similar and/or divergent eco-
morphologies evolved. Perhaps the most striking finding 
of our study was the highly significant differential expres-
sion of eda between LT species versus the species from 
the younger lakes (LM and LV species) in both anterior 
and posterior scales (Fig. 4). Interestingly, the eda expres-
sion in the riverine species (A. burtoni), which recently 
has been shown to be closer related to the LM and LV 
species flocks as a part of the sister group to the LT Tro-
pheini [64], was at intermediate level between LT and the 
species from LM and LV in both anterior and posterior 
scales, reflecting the phylogeny. Moreover, the expression 
patterns of eda in both scales were highly correlated with 
morphological divergence across the species in this study. 
Ectodysplasin A (eda) encodes a member of the tumor 
necrosis factor family and mediates a signal conserved 
across vertebrates which is essential for morphogenesis 
of ectodermal appendages, such as scale, hair and feath-
ers [22]. The eda signal is mediated through its receptor 
(encoded by edar) and initiated upon binding of eda to 
edar on the surface of a target cell [22]. In human, muta-
tions in components of eda signal can cause hypohidrotic 
ectodermal dysplasia (HED) which is characterized by 
reduction and abnormal teeth morphology, absence or 
reduction of sweating glands and hair [65]. Similarly, 
impaired eda signal in zebrafish and medaka can lead to 
reduction in the number of scales and teeth [18, 19]. In 
sculpin (Cottus) fishes, genetic changes in the receptor 
gene (edar) has been found to be associated with mor-
phological variations in body prickles (calcified spicules 
embedded in the skin), which are homologous structures 
to fish scales [66]. A later study in a highly derived order 
of teleosts, Tetraodontiformes, which includes ocean 
sunfishes, triggerfishes and pufferfishes, also showed the 
importance of eda signaling pathway in developmen-
tal formation and morphological variations of dermal 
spines (an extreme scale derivative) [67]. In stickleback, 
a mutation within an inter-genic region between eda 
and tnfsf13b genes leads to changes in transcriptional 

responsiveness of eda to its upstream Wnt signaling 
pathway and consequently impairment of armor plate 
formation [68].

In this study, we also found genetic changes in 3’UTR 
and the inter-genic region between eda and tnfsf13b 
genes that could explain the differences in eda expres-
sion across the Haplochromine cichlids (Table  3). The 
genetic changes resulted gain or loss of motifs which 
were predicted to be binding sites for transcription fac-
tors encoded by mef2, tcf1 and lef1 genes. These changes 
always discriminated the LT species from the spe-
cies from LM and LV, whereas the riverine species had 
changes which could be considered an intermediate to 
both groups. Interestingly, all of the three predicted tran-
scription factors (mef2, tcf1 and lef1) are linked to Wnt 
signaling pathway. It is already known that mef2 can 
enhance canonical Wnt signal [69] and it is involved in 
osteogenesis as well [70–72]. The binding site motif for 
mef2 appeared to be deleted in 3’UTR of the LT and riv-
erine species. On the other hand, a binding site motif for 
tcf1 was gained in 3’UTR of the LM, LV and riverine spe-
cies. In mice, tcf1 is demonstrated to be involve in parax-
ial mesoderm and limb formation and appeared to be act 
downstream of Wnt signal similar to lef1 transcription 
factor [73]. Moreover, canonical Wnt signaling has been 
shown to regulate osteogenesis through tcf1 respon-
sive element on regulatory sequence of runx2 in mam-
mals [74]. The third motif predicted to be a binding site 
for lef1 and only found within eda—tnfsf13b inter-genic 
region of LT species. Lef1 is again a well-known media-
tor of canonical Wnt signaling pathway which inhib-
its final stage of osteoblast differentiation [75] but it is 
essential for osteoblast proliferation and normal skeletal 
development [76, 77]. During development lef1 function 
is shown to be essential for scale outgrowth in zebrafish 
[78], and eda expression is known to be regulated by Wnt 
signal through lef1 transcriptional activity in mammals 
[79, 80]. In stickleback, mutation in an inter-genic region 
between eda and tnfsf13b genes is suggested to affect 
a binding site for c-jun transcription factor which its 
interaction with lef1 is required for eda transcriptional 
response to Wnt signal during armor plate formation 
[68]. Taken together, these observations, suggest muta-
tions in enhancer sequences required for binding of Wnt 
signal components as potential underlying reason for the 
divergent expression of eda in both anterior and poste-
rior scales of the cichlid species in this study.

In the posterior scale, in addition to eda, three more 
genes, dlx5, rankl and shh, displayed expression corre-
lation with morphological divergence across the cichlid 
species (Fig.  6). The first gene, distal less homeobox  5 
or dlx5, encodes transcription factor stimulating oste-
oblast differentiation and bone development, and it is 
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also implicated in scale development and regeneration 
in fish [81–83]. Apart from its role in skeletogenesis, 
dlx5 has been found to be involved in divergent devel-
opment and morphogenesis of other tissues in cichlids 
such as teeth and nuchal hump [84–86]. In goldfish, 
dlx5 expression appeared to be important at early 
stages of scale regeneration [81], and in both zebrafish 
and goldfish, dlx5 transcription in scale can be affected 
by environmental clues such as mechanical stimulus 
[82, 83]. The second gene, rankl, encodes a ligand for 
osteoprotegerin (opg) and plays a crucial role in osteo-
clast differentiation and bone remodelling. Changes 
in rankl transcription appeared to be important dur-
ing scale regeneration in goldfish [81, 87], as well as 
intercellular communications regulating scale bone 
remodeling in zebrafish and goldfish [82, 88]. Both 
dlx5 and rankl have shown expression correlation pat-
terns opposite to eda and shh in the posterior scales. 
Although, direct regulatory connections between these 
factors have not been investigated in scale but these 
findings suggest their potential interactions at tran-
scriptional level. Moreover, higher expression of rankl 
in the scales of LT species compared to LM and LV spe-
cies might indicate higher level of bone remodelling in 
their scales.

The third gene, sonic hedgehog or shh, encodes a 
ligand of hedgehog signaling pathway which is shown 
to control scale morphogenesis in relationship with the 
formation of the epidermal fold in the posterior region 
of scale in fish [16]. In zebrafish, epidermal expression 
of shh has been shown to regulate scale regeneration 
through controlling osteoblast population and affecting 
directional bone growth [89]. We found similar expres-
sion pattern between eda and shh which is more pro-
nounced in the posterior scales. This is consistent with 
previous findings in other vertebrates, for instance, 
eda has been demonstrated to act upstream of shh and 
induce shh expression during ectodermal organogen-
esis in mammals (e.g. during hair placode formation) 
[90–94]. Furthermore, it has been shown that the eda-
dependent regulation of shh might be a part of larger 
molecular cascade in which an upstream signal such 
as Wnt pathway activates eda signal and in turn eda 
induces shh transcription [92, 94, 95]. These observa-
tions suggest potential role of Wnt-eda-shh axis in 
divergent scale morphogenesis across Haplochromine 
cichlids, which seems to be more pronounced in the 
posterior scales. Finally, it is important to emphasize 
that since the expression differences are only investi-
gated in mature stage, well beyond the larval stages at 
which scale formation initiates, it is likely that these 
findings mainly explain differences in growth process 
than morphogenesis of the scales.

Conclusions
This is the first attempt to study cross-species association 
between gene expression and morphological divergence in 
scales of cichlids from different lakes. Our results provide 
evidence for potential role of a key signal mediated by eda 
gene to be involved in divergent morphogenesis of scale in 
closely related cichlid species. We show that eda expres-
sion has lower level in the scales of species from the older 
lake (Lake Tanganyika) and correlates with the observed 
shape variations across species. Our findings shed light on 
molecular basis of morphological divergence of a less stud-
ied skeletal element; however, further transcriptional and 
functional investigations during scale development and 
growth/mineralization are required to assure eda signal-
ing underlies the identified morphological differences and 
whether these differences have adaptive relevance in eco-
logical and evolutionary-developmental contexts.
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