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Abstract 

Background: The phylogenetic ecology of the Afro-Asian dragonfly genus Trithemis has been investigated previ-
ously by Damm et al. (in Mol Phylogenet Evol 54:870–882, 2010) and wing ecomorphology by Outomuro et al. (in J 
Evol Biol 26:1866–1874, 2013). However, the latter investigation employed a somewhat coarse sampling of forewing 
and hindwing outlines and reported results that were at odds in some ways with expectations given the mapping of 
landscape and water-body preference over the Trithemis cladogram produced by Damm et al. (in Mol Phylogenet Evol 
54:870–882, 2010). To further explore the link between species-specific wing shape variation and habitat we studied 
a new sample of 27 Trithemis species employing a more robust statistical test for phylogenetic covariation, more 
comprehensive representations of Trithemis wing morphology and a wider range of morphometric data-analysis 
procedures.

Results: Contrary to the Outomuro et al. (in J Evol Biol 26:1866–1874, 2013) report, our results indicate that no statis-
tically significant pattern of phylogenetic covariation exists in our Trithemis forewing and hindwing data and that both 
male and female wing datasets exhibit substantial shape differences between species that inhabit open and forested 
landscapes and species that hunt over temporary/standing or running water bodies. Among the morphometric 
analyses performed, landmark data and geometric morphometric data-analysis methods yielded the worst perfor-
mance in identifying ecomorphometric shape distinctions between Trithemis habitat guilds. Direct analysis of wing 
images using an embedded convolution (deep learning) neural network delivered the best performance. Bootstrap 
and jackknife tests of group separations and discriminant-function stability confirm that our results are not artifacts of 
overtrained discriminant systems or the “curse of dimensionality” despite the modest size of our sample.

Conclusion: Our results suggest that Trithemis wing morphology reflects the environment’s “push” to a much greater 
extent than phylogeny’s “pull”. In addition, they indicate that close attention should be paid to the manner in which 
morphologies are sampled for morphometric analysis and, if no prior information is available to guide sampling 
strategy, the sample that most comprehensively represents the morphologies of interest should be obtained. In many 
cases this will be digital images (2D) or scans (3D) of the entire morphology or morphological feature rather than 
sparse sets of landmark/semilandmark point locations.
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Background
The interplay between the effects of phylogenetic rela-
tions among species, and the role of the environment 
in shaping the range of morphologies we observe in 
nature, has been a subject of perennial interest for 
those who seek to understand evolutionary processes. 
That both factors have effected biodiversity in the dis-
tant past, as well as in the present day, is beyond ques-
tion. But appreciating the extent to which one factor 
has exerted dominance over the other—whether the 
forms we observe in nature are the result of phyloge-
ny’s “pull” or the environment’s “push”—is an issue that 
must be considered on a case-by-case basis.

Prior to the advent of phylogenetic systematics and 
the revolution wrought by the introduction of molecu-
lar data into systematics, the environment was consid-
ered to have the upper hand in this contest. Even into 
the distant reaches of antiquity, when a species that 
exhibited a novel combination of morphological char-
acteristics was discovered, the first question most natu-
ralists asked was what the structure could be used for; 
what was its purpose?

In their influential 1979 essay, Stephen Jay Gould and 
Richard Lewontin referred to this point-of-view as the 
“adaptationist programme”; the idea that the environ-
ment, through the agency of natural selection, opti-
mized all aspects of a species’ morphology, physiology, 
behavior, etc. for the conditions present in the environ-
ments they inhabited. As an alternative to this view of 
life, Gould and Lewontin [1] offered a model that rein-
forced the potential role of phylogenetic history in such 
explanatory narratives. Of course, all species must meet 
the functional challenges posed by their local environ-
ments. But does this really, or always, mean that every 
aspect of a species’s biology is optimized for some 
proximate purpose by natural selection at all times 
throughout its evolutionary history? Or should species 
morphologies be regarded as integrated Baupläne, con-
strained by phyletic inheritance, some of whose attrib-
utes are shaped by the needs of present environmental 
interactions but others of which are neutral in the face 
of selection? Indeed, they might even be slightly disad-
vantageous to individual survival if they were the by-
products of a developmental system that served some 
larger adaptive purpose. In raising this alternative 
explanation Gould and Lewontin did not resolve the 
question of how best to interpret either novel or ordi-
nary morphological structures. They only extended the 

range of interpretations, and so the range and types of 
evidence, that might be brought to bear on this ques-
tion’s resolution.

Today, we have much better conceptual and analytic 
tools for  discovering and describing patterns in the dis-
tribution of morphological features, along with much 
better ways of estimating degrees of phylogenetic rela-
tions within groups of species. In particular, Felsenstein 
and later colleagues’ work on the biological comparative 
method [2–7] have addressed many long-standing statis-
tical difficulties surrounding attempts to analyze patterns 
of similarity and difference across groups of taxa that are 
embedded in a network of ancestry and descent. While 
work remains to be done in this area (e.g., [8]), many out-
standing problems that have complicated, and in many 
cases compromised, the research of evolutionary biolo-
gists for generations have been overcome.

In addition, new tools have become available for under-
taking exploratory analyses of morphological structure. 
Of particular  note, the geometric morphometric (GM) 
approach has done much to encourage the quantitative 
analysis of morphological data. This approach to mor-
phometric analysis (see [9–14]) is now over 30 years old 
and can no longer be described as a “new” development 
(see [15, 16]). While GM constitutes a very valuable set 
of tools, procedures and standards for testing many types 
of morphological hypotheses, its core paradigm—that 
patterns of morphological variation be described via ref-
erence to sparse sets of landmark and/or semilandmark 
locations—requires that the features of greatest morpho-
logical interest be known at the outset of an investigation. 
The geometries of these features must also be capable 
of being represented adequately by a small number of 
two-dimensional (2D) or three-dimensional (3D) point 
coordinates. These point-coordinate locations should, 
ideally (1) be distributed more-or-less evenly across the 
morphologies or structures in question, (2) be able to 
be located unambiguously at topologically homologous 
positions and (3) be able to be located on every specimen 
in the sample. So long as morphological comparisons are 
being made across a set of well-preserved and morpho-
logically similar species, this approach works well. Nev-
ertheless, as the taxonomic scope and/or spatial detail of 
a morphological investigation increases, the ability of a 
sample to meet these rather stringent requirements often 
decreases, resulting in a concomitant decrease in the 
power, and so the appropriateness, of classic GM-style 
analyses.

Keywords: Trithemis, Odonata, Dragonfly, Morphology, Ecology, Geometric morphometrics, Machine learning, 
Convolution neural network
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Over the last two decades a completely novel approach 
to the analysis of morphological variation has been devel-
oped in the form of machine learning (ML) algorithms. 
While this approach has its origins in regression-based 
procedures that would be familiar to any GM practitioner 
(e.g., linear regression, principal component analysis 
(PCA), linear discriminant analysis), its core algorithms 
have been incorporated into such complex data-analysis 
system designs that their regression-based origins have 
become obscure to many casual users. Nonetheless, it is 
this complexity that gives ML algorithms their extraor-
dinary power; a power that has provoked both amaze-
ment and, in certain areas, no small amount of concern. 
Despite many broad and convincing demonstrations that 
ML-based approaches can sense and identify patterns of 
variation in a very wide range of data types (and so in a 
very wide range of data-analysis contexts), systematic 
biologists have been slow to avail themselves of these 
new data-analysis tools and integrate them into their 
research programs.

Machine-learning algorithms are well suited to deliver 
the sorts of analyses GM-style approaches struggle to 
provide. One prominent example is the exploratory 
search for morphological differences between a priori 
defined taxonomic groups, especially in those (com-
mon) instances where there is little consensus among 
experts as to which morphological features carry group-
diagnostic signal(s). This is precisely the type of problem 
many “deep learning”, or convolution (artificial) neural 
networks (CNNs), were designed originally to address 
[17–22]. The performance of CNN-based systems on 
standardized, human-validated, image-challenge datasets 
is what, arguably, was responsible for the current renais-
sance of interest in ML techniques (e.g., [23, 24]) and, 
more generally, in artificial intelligence (see [25]).

Insect wing morphology has long been recognized 
as having great potential for exploring and illustrating 
the advantages of quantitative morphological analysis 
in both taxonomic and ecological contexts. Some of the 
first publications illustrating the use of GM methods took 
insect-wing morphology as their subject (e.g., [26–28]). 
Insect wings are complex structures for which an exten-
sive descriptive nomenclature has been developed [29, 
30], In particular, the intersections or nodes of insect 
wing veins form classic Type 3 landmark positions [11], 
many of which can be relocated across a surprisingly 
broad range of species. This observation, along with the 
consistency of form or relative positions of many major 
structural veins, lends support to the widely-held belief 
among entomologists that wings constitute biological 
homologues for insects as a whole [30].

Much recent quantitative research has documented 
the fact that insect wing morphology can be used to 

identify species (e.g., [26, 31, 32]), populations (e.g., 
[33]) and even sexes [34]. But, while much remains to 
be learned about the relation between wing shape and 
aerodynamic function [35], mechanistic and observa-
tional evidence indicates that insect wings of different 
shapes and internal structural arrangements are asso-
ciated with different aerial capabilities [36]. This sug-
gests that, like the wings of birds [37–39] and bats [40], 
insect wing form might reflect aspects of species’ pre-
ferred environment(s), a suggestion for which there is a 
limited amount of positive evidence (see [35]).

Unfortunately, the morphological complexities of the 
insect wing also pose a number of challenges for quan-
titative morphological analysis. The sheer number of 
vein domains (sensu [41, 42]) comprising many insect 
wings makes it difficult to decide how to character-
ize wing morphology and the level of detail required 
to resolve particular morphology-related questions. It 
is, of course, always tempting to employ as much data 
as can be collected in attempts to resolve outstanding 
issues of controversy and/or develop comprehensive 
summaries of morphological trends. However, the well-
known “curse of dimensionality” often renders datasets, 
in which the number of variables greatly exceeds the 
number of samples or specimens available, difficult to 
analyze (see [43]), especially when the task is to achieve 
reliable between-groups discrimination ([44], but see 
[45, 46]). Related to this question are perennial con-
cerns regarding whether it is better to focus analysis on 
the locations of landmark configurations that represent 
aspects of the wing’s internal morphology, or the geom-
etry of the wing outline. Then there is the question what 
to do about the coloration patterns that are an intrinsic 
part of the morphology of many insect wings and may 
have significant species characterization/identifica-
tion and/or behavioral roles, but that resist attempts 
to characterize them consistently or accurately across 
even modestly sized samples via reference landmark or 
semilandmark data (Additional file 1).

The difficulties raised by these considerations are 
compounded by the fact that, at the outset of an 
investigation, many researchers have little idea which 
aspect(s) of the morphology are best suited to resolv-
ing particular questions. Yet, the outcome of any mor-
phological hypothesis test wholly depends on decisions 
regarding which aspect(s) of the morphology to meas-
ure. If a poor choice is made, inadvertently, and a nega-
tive result obtained, is it appropriate to conclude that 
the structure or character complex in question does 
not exhibit the pattern of variation predicted by the 
hypothesis test? Or could it be that the data used to 
represent the structure or character complex in ques-
tion do not exhibit the pattern(s) of variation predicted 
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by the hypothesis test, but that other, as yet unsampled, 
aspects of the morphology might?

In 2013 Outomuro et  al. [47] published a study that 
compared wing-shape and habitat variation in drag-
onflies belonging to the Afro-Asian genus Trithemis. 
These species occur in a variety of ecological habitats 
with some species preferring forests to open coun-
try, others preferring to hunt in the vicinity of perma-
nent running streams while others are found typically 
around temporary or standing pools. This study also 
compared sexual dimorphism in wing shape across 
the species included in the sample. These authors 
found significant phylogenetic covariation among wing 
shapes, no significant association between wing shape 
and water body type, a contrast between forewing and 
hindwing shape in terms of the ability of these struc-
tures to reflect landscape type, and a distinct difference 
among males and females belonging to the same spe-
cies. Accordingly, Outomuro et al. [47] concluded that 
“natural and sexual selection are acting partially inde-
pendently on [Trithemis] fore- and hind- wings and 
with differences between the sexes, despite evidence for 
phenotypic correlation of wing shape between males 
and females” (p. 1866).

We find nothing wrong or amiss with any of these 
conclusions. Nevertheless, we wonder whether this rep-
resents the whole of the story embodied by the wing 
morphologies of Trithemis dragonflies. Outomuro et  al. 
[47] employed a decidedly non-standard manner of rep-
resenting both forewing and hindwing shapes (see Fig. 1 
of [47]). Their study focused on quite a sparse set of 
landmark locations collected from the wing peripheries 
with complications arising from the fact that these data 
(apparently) were collected from specimens in which the 
outlines of the forewings and hindwings overlapped. This 
may have prevented precise location of landmarks along 
the trailing, proximal edge of the forewing. In addition, 
the location of forewing landmarks was quite uneven 
with the morphology of the trailing edge and wing tip 
being sampled much more intensively than the leading 
edge proximal wing margin. These same spatial discrep-
ancies in sampling intensity were also present for the 
hindwing. The effect of using sets of sparse and unevenly 
distributed landmarks to represent wing form would 
be to characterize only portions of each wings’ overall 
geometry and to differentially weight variation in those 
parts of the wings sampled more intensively relative to 
those sampled using fewer landmarks.

Fig. 1 A Major morphological features of the Trithemis forewing (top) and hindwing (bottom). C = costa; N = nodus, Cs = subcosta; R + M = radius 
and media;  R1 = first radius;  R2 = second radius;  R3—third radius;  R4 = fourth radius; MA = media anterior;  IR3 = intercalary vein behind  R3, 
Cu = cubitus; CuP = cubitus posterior, Ps = pterostigma. Note that, unlike other dragonfly genera, the major structures features of the Trithemis 
forewing and hindwing are quite similar (see also Additional file 1: Plates 1 and 2), facilitating detailed direct comparisons between individual 
wings and across species within this genus. B Positions of the 38 landmarks (white) and semilandmarks (black) used to quantify Trithemis forewing 
(top) and hindwing (bottom) form. Landmarks are located at the origins, intersections or peripheral termini of major wing veins (see Additional 
files 2: Landmark-Semilandmark Definitions). Peripheral landmarks 1, 6, 13, 20, 25 and 31 were used to subdivide the wing outlines into five zones 
with the number of evenly spaced semilandmarks interpolated within these zones being sufficient to represent their zone-based peripheral 
outline geometries to a minimum accuracy of > 95% across all specimens in the sample. This form-sampling system ensures accurate and even 
representation of the wing outline characterization and improves inter-semilandmark correspondence across specimens
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Outomuro et al. [47] also appear to have used an odd 
scheme of angles to locate peripheral landmarks in the 
anal region of the hindwing’s trailing edge, with posi-
tions located at 10°, 27°, 54°, 73°, 81° and 90° from a chord 
drawn between the wing’s anterior thoracic articula-
tion and the intersection between the nodus to the wing 
periphery (at least, as shown in Fig. 1 of [47]). Other than 
this figure, no definitions of either the forewing or the 
hindwing landmarks were provided though, in all cases 
other than those noted above, the landmarks appear to 
have been placed at the intersections between major 
wing veins (e.g., costa, subcosta, first radius), or pter-
ostigma (see Fig. 1A), and the wing periphery. Standard 
GM practice would be to represent each wing’s outline 
shape using a set of (initially) equally spaced semiland-
mark points from a common starting landmark in order 
to ensure consistent resolution across the dataset and 
across all forms comprizing the sample.

Given these aspects of the Outomuro et al. [47] analy-
sis, in addition to the fact that no internal landmarks 
were employed in the characterization of wing morphol-
ogy, we suspected that potentially important aspects of 
the relation between Trithemis wing form and habitat 

guild may have been overlooked. Accordingly, we chose 
to determine (1) whether we could reproduce the find-
ings of Outomuro et  al. [47] in terms of the relation 
between wing shape and both landscape and water body 
preference using different form-characterization stand-
ards and different data-analysis methods and (2) whether 
there was anything more this dragonfly genus had to tell 
us about the relation between wing morphology, ecology 
and natural selection. This comparison was also under-
taken to (3) clarify the range of options available to quan-
titative morphologists interested in confronting similar 
problems in other taxonomic groups and (4) provide a 
relative assessment of the power of different data types 
and data-analysis methods when used in similar ecomor-
phological contexts.

Results
Phylogenetic signal analyses
The degree to which patterns of shape variation in the 
Trithemis species considered here covary with the pat-
tern of Trithemis ancestry and descent (Fig.  2) was 
examined for mean forewing and hindwing landmark-
semilandmark shape configurations using the Kmult test 

Fig. 2 Ultrametric Trithemis cladogram (modified from [49]) showing phylogenetic relations for all species included in this investigation. This tree 
was inferred from ND1 and 16S genetic sequences based on maximum likelihood branch lengths. Time calibration was based on the r8s sequence 
using a 10 mya estimate for the basal Trithemis node which itself was based on data from the fossil record [50]. Landscape characters also from [49]. 
Note the manner in with the distributions of landscape and water-body preferences are arrange as phylogenetic grades rather than phylogenetic 
clades
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described by [48]. This statistic tests the null hypothesis 
that the degree of morphological shape similarity exist-
ing among a set of species reflects the structure of phy-
logenetic relations existing between species under the 
assumption that morphological evolution conforms to a 
Brownian-motion model with an expected value of 0.0 
and a variance (σ2) proportional to the elapsed time since 
speciation from a common ancestor. As noted by Adams 
[48], the random, or Brownian, expectation for GM data 
is derived by calculating the ratio between the observed 
square of the distance-based deviation of each species’ 
mean shape-coordinate configuration from the phylo-
genetic mean (= mean square error observed) and the 
expected square of the distance-based deviation of each 
species’ mean shape-coordinate configuration from the 
phylogenetic mean along the phylogenetic tree (= mean 
square error expected). This ratio is then scaled by the 
phylogenetic covariance matrix. Values less than, or 
greater than, 95 percent of the expected distribution of 
Kmult values for our sample of 27 species reflect patterns 
of shape variation that was either less than, or greater 
than expected under a random phylogeny model (= no 
phylogenetic signal) respectively. In order to avoid the 
need to make unsubstantiated assumptions with regard 
to interactions among variables, the expected Kmult distri-
butions conforming to the null hypothesis of no phyloge-
netic covariation were estimated via a bootstrap strategy, 
by permuting the tips of the Trithemis tree randomly 
1000 times and calculating the expected Kmult value for 
each permuted tree.

Results of the Kmult tests for forewing and hindwing 
landmark-semilandmark datasets (Fig.  3) show that, 
for both wings, the Kmult values calculated from the 
Trithemis phylomorphospace failed to indicate that 

these wing shapes contained a statistically significant 
signal of phylogenetic covariation. Given the number of 
studies demonstrating significant patterns of phyloge-
netic covariation in a host of morphological, ecological, 
and behavioral variables this result might strike some as 
unexpected. However, most of this extensive literature 
involves the analysis of single or pairs of metric traits or 
categorical variables. Owing to the lack of generalized 
tests for the extent of phylogenetic signals in morpho-
metric data it is presently unknown whether this result 
would be regarded as common, or unusual, if a substan-
tial body of similar, published reports, were available. 
What can be said without doubt, however, is that these 
GM-based characterizations of our Trithemis forewing 
and hindwing morphologies—which are the most com-
prehensive and detailed collected to date—failed to yield 
any evidence for patterns of wing-shape variation con-
sistent with their phylogenetic structure.

An analysis of the Procrustes PCA spaces created as a 
by-product of the phylogenetic signal test (Fig.  4) both 
supports and clarifies the nature of this phylogenetic 
covariation test result. These diagrams show that hypo-
thetical ancestral shapes (= internal tree nodes) are 
clustered in the centers of these spaces; indicating they 
exhibit closer correspondence to the phylogenetic mean 
wing shape configuration than is typical of the termi-
nal taxa. Projected positions of the terminal branches 
(= Trithemis species) form a “halo” of relatively more 
extreme wing shapes surrounding those estimated for 
the hypothetical Trithemis ancestors. However, the tree 
branches connecting internal nodes with each other, and 
with the terminal Trithemis species, exhibit a high degree 
of network crossover. This result indicates that species 
from very different parts of the Trithemis phylogeny 

Fig. 3 Bootstrapped phylogenetic signal distributions for the Trithemis forewing and hindwing landmark-semilandmark shape datasets. Note that, 
in both cases, the observed values of the  Kmult statistic fall well into the range expected for randomized phylogenies. Accordingly, there are no 
grounds for concluding either forewing or hindwing shape distributions reflect phylogenetic covariation in Trithemis to a statistically significant 
extent
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exhibit similar forewing and hindwing shapes, and that 
closely related species often exhibit quite different and 
distinct forewing and hindwing shapes. Thus, there is 
little evidence in these data for any substantial degree 
of phylogenetic covariance in the structure of Trithemis 
forewing or hindwing shapes; a visual morphometric 
result that supports the results obtained from the Kmult 
statistical phylogenetic covariation tests.

The lack of obvious habitat-based clustering of 
Trithemis species in this (or any other) Procrustes PCA 
subspace suggests there is little evidence supporting the 
idea that the wing shapes of Trithemis species reflect 
either landscape or water body habitat preferences. 
However, these analytic results constitute a weak test of 
this ecomorphological hypothesis insofar as the shape 

ordinations that result from any PCA are optimized to 
reflect the directions of maximum variance in the pooled 
sample, without taking account of any differences that 
may, or may not, exist between subsidiary groups. The 
correct interpretation of these results, with respect to 
testing hypotheses of group distinction, is that, if any 
group-level shape distinctions are present within these 
data, they are not aligned with the directions of pooled-
sample wing-shape variance. Owing to the nature of the 
optimizations present in PCA ordination spaces, this 
interpretational constraint applies not only to visual 
inspections of the ordination-space patterns, but also to 
any statistical tests based on these PCA score data, no 
matter how many components are included in such tests. 
Accordingly, neither inspection of PCA ordination plots 

Fig. 4 Phylomorphospace plots for the subspaces formed by the first two Procrustes principal components calculated from the Trithemis forewing 
and hindwing landmark-semilandmark datasets. Projected positions of the Trithemis (tree tip) species color coded to reflect their landscape and 
water body habitat preferences. Note the number of tree branches that cross one another in this space, indicating that the distribution of wing 
shapes is not being controlled, or reflecting phylogenetic structure to any substantial extent. These results support the findings of the statistical 
phylogenetic signal test  (Kmult) shown in Fig. 3
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such as these, nor analysis of PCA score data, constitutes 
a sufficient basis on which to conclude that group-level 
shape distinctions do not exist within morphometric 
data.

Geometric morphometric (GM)‑style analyses 
of landmark‑semilandmark datasets
The issue of whether habitat-based, wing-shape distinc-
tions do exist within these GM-style data was addressed 
by performing a CVA on the PCA scores of wing-shape 
configurations for the set of Procrustes principal com-
ponents (= covariance eigenvectors) that together 
accounted for 95 percent of the observed shape variance 
for both the forewing (13 components) and hindwing (14 
components) datasets. It is clear from the histograms of 
the projected wing-shape positions on the single linear 
discriminant axis (Fig.  5) that, for this classic GM-style 
representation of Trithemis wing shape, broad zones of 
overlap exist between species that prefer open and for-
ested habitats and among species that prefer to hunt over 
running, as opposed to temporary or standing water. 

This having been said, a clear distinction also exists 
between the wing morphologies found typically among 
these two opposing sets of ecological habitats. Tests of 
this distinction using a bootstrapped version of Hotel-
ling’s multivariate extension of the two-sample t-test—to 
avoid interpretative constraints imposed by any failure 
of these data to meet the assumptions of the parametric 
T2 test—demonstrate that the shape differences shown 
in Fig.  5 are significant statistically at well beyond the 
standard p = 0.95 confidence level (see Additional files 2: 
Geometric Morphometrics (Landmarks) CVA results for 
forewing and hindwing datasets). Since wing shape vari-
ation in these Trithemis species cannot be interpreted  to 
be  an epiphenomenon of phylogenetic covariation (see 
above), the most reasonable interpretation is that fore-
wing and hindwing shape differences result from mor-
phological convergence on forms that represent airfoil 
designs suited for aerial hunting in these different envi-
ronments. The fact that these habitat-related shape dif-
ferences do not account for the major directions of wing 
shape variation present within the sample suggests that 

Fig. 5 Frequency histograms for Trithemis forewing and hindwing shape distinctions for species preferring different landscape and water body 
habitats as assessed from the landmark-semilandmark coordinate datasets. Note that, despite the broad ranges of shape overlap, a clear distinction 
exists between the central tendencies of these habitat-based wing shape groups. Statistical comparison of the between-groups separation relative 
to within-groups dispersion using a bootstrapped version of Hotelling’s  T2 test indicate that all four comparisons are significant at well beyond the 
p = 0.95 confidence level
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a variety of Trithemis forewing and hindwing shapes 
are viable functionally. But based on these results there 
is a strong, and statistically significant, indication that 
subtle, but definite, common wing-shape differences 
exist between forest and open habitat-dwelling, and 
between running and temporary/standing water-hunting, 
Trithemis species.

Which aspects of Trithemis wing morphology are 
responsible for these habitat-level distinctions? Shape 
configuration vector-displacement models (Fig.  6), 
based on the forewing and hindwing linear discriminant 
results, show that open landscape species, and species 
that hunt over running water bodies, exhibit slightly nar-
rower forewings relative to forest-dwelling and stand-
ing water-hunting species. In both cases this narrowing 
is achieved via lateral, outboard migration of all costal 
landmarks and semilandmarks with the displacement 
magnitude reaching an acme in the middle of the inter-
val between the nodus (semilandmark 6) and the wing 
apex close to the costal terminus (semilandmark 12) with 
these displacement vectors incorporating a subordinate 
posterior orientation in the vicinity of the wing apex. Dis-
placements of the descending nodus vein-radius + media 
vein vertex landmark (32),  R3 bifurcation vertex land-
mark (33) and distal  IR3 landmark (34) also follow this 
general displacement pattern with the latter exhibiting 
a contrary subordinate anterior orientation. In contrast, 
landmarks and semilandmarks along the posterior wing 
margin exhibit inboard-anterior displacement vectors 

whose magnitudes culminate in the vicinity of the  R3 vein 
terminus (semilandmark 20). These displacements have 
the effect not only of making the wings of open landscape 
and running water species narrower than those of forest-
dwelling and temporary/standing water-species, but also 
more uniform in width. In addition, the proximal poste-
rior wing margins of open landscape and running water 
species are more gently curved than forest-dwelling and 
temporary/standing water-species which exhibit a more 
sharply angled anal area or “proximate posterior corner”.

With regard to hindwing morphology, the landmark-
semilandmark displacement trends are similar to those 
of the forewing in general, but with a few interesting dif-
ferences. As with the Trithemis forewings, hindwings in 
species that inhabit forested landscapes and hunt over 
running waters are slightly narrower and have more pro-
nounced anal area “corners” compared to species that 
inhabit open landscapes and hunt over temporary/stand-
ing waters. Also, as with the forewings, this shape trans-
formation is accomplished via lateral outboard migration 
of the costal landmarks and semilandmarks (1–13), lat-
eral inboard and anterior-ward migration of the distal 
and medial posterior margin landmarks and semiland-
marks (14–24), and a pronounced lateral outboard and 
posterior migration of the posterior wing-margin land-
marks and semilandmarks located in the wing’s anal area 
(25–29). Internal hindwing landmarks also mimic the 
displacements seen in their analogous forewing land-
marks for the most part.

Fig. 6 Vector displacement models for Trithemis habitat-category contrasts calculated from the linear discriminant analysis of forewing and 
hindwing datasets. For illustrative purposes displacement-vector lengths have been exaggerated by a factor of 4. Note similarity in the geometric 
character of habitat-group displacement patterns across the landscape and water body linear discriminant results
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Nevertheless, differences exist in the orientation of 
hindwing displacement vectors at the extreme proxi-
mal and extreme distal ends of the wing body. Whereas 
landmarks and semilandmarks documenting the forms 
of the forewing’s apex (12–14) exhibit a subordinate 
posterior migration, in the forewing, these same points 
exhibit a distinct-but-subordinate anterior migration 
in the hindwing. Similarly, whereas the forewing ante-
rior wing-attachment landmarks (1 and 31) and closely 
associated semilandmark (30) display a dominant pos-
terior-inboard migration in concert with the anal-area 
semilandmarks, in the hindwing these landmarks dis-
play a pronounced anterior migration in opposition to 
the anal-area semilandmarks. This transformation fur-
ther accentuates the proximal width of Trithemis hind-
wings in those species that inhabit forested landscapes 
and hunt over running waters.

The consistency of the CVA results displayed in Figs. 5 
and 6 across habitat categories raises the question of 
whether these habitat-based distinctions in wing shape 
represent separate, or conjugate, aspects of selection 
on these dragonfly species. This determination cannot 
be made from the frequency histograms, but instead 
requires a linear regression analysis (Fig. 7) to determine 
the level of similarity between landscape and water-body 
linear discriminant analysis scores for both forewing and 
hindwing analyses.

The null hypothesis for these regression tests is that 
no linear relation exists between the projections of 
wing shape in discriminant spaces optimized for land-
scape and water-body aspects of the Trithemis habi-
tat. In evolutionary terms, this null hypothesis amounts 

to a statement that selection on Trithemis wing shape 
operated differently in its attempt to modify forewing 
and hindwing shapes for optimal function in forested, 
as opposed to open, landscapes and above running, as 
opposed to temporary/standing, waters. The scatterplots 
shown in Fig. 7 document an abundant degree of varia-
tion in the comparison of wing-shape scores in landscape 
and water body-optimized linear discriminant vectors. 
But these data also document a well-established and 
convincing linear trend in both Trithemis forewings and 
hindwings. Accordingly, it would seem that, despite the 
fact that differences are present in the species assigned 
to different landscape and water body character states 
(see Fig. 2), these differences are insufficient to overturn 
the hypothesis that, for this dataset, a pronounced, and 
statistically significant, correspondence exists between 
species inhabiting forested landscapes and running water 
bodies and between species inhabiting open landscapes 
and temporary/standing water bodies, in terms of their 
patterns of forewing and hindwing shape variation.

Failure to identify a clear distinction between these 
two habitat categories is, perhaps not surprising in that 
it may be a by-product of the Trithemis samples included 
in this investigation. All samples came from museum col-
lections where, it can be assumed, priority was given to 
collecting specimens that represent the species in ques-
tion, but not necessarily the range of habitats in which 
members of that species might occur. Species-specific 
sample sizes are also modest relative to most ecomor-
phological investigations (see Methods). Be this as it may, 
it is undeniably the case that just under 75 percent of 
our Trithemis species which occur typically in “forested” 

Fig. 7 Standardized major axis linear regression analyses of linear discriminant scores calculated for landscape and water body habitat differences 
for Trithemis forewing and hindwing landmark-semilandmark datasets. Although there is a broad range of scatter in these data and the species 
assigned to these different habitat categories differ somewhat (see Fig. 3), a statistically significant linear trend does exist for both datasets. 
Accordingly, the null hypothesis that selection for wing shape differences operated in a different manner for landscape and water body aspects of 
the environment can be rejected
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habitats have also been assigned by [49] to the “running” 
water-body category and those occurring typically in 
“open” habitats to the “temporary/standing” water-body 
category. To the extent that these assignments are correct 
and accurate, our finding that no wing shape distinction 
exists between these habitat-pair combinations may be a 
fully justified overall reflection of Trithemis biology. Of 
course, this result is also tied to the taxonomic compo-
sition of our Trithemis sample and the manner in which 
our landmark-semilandmark data represent Trithemis 
wing morphology. As such, we a regard this result as an 
accurate description of our sample, but an interpretation 
of Trithemis ecomorphology that is provisional, pending 
more focused ecomorphological investigation with larger 
intra-specific samples collected with this issue in mind.

Regarding the overall quality of the discriminant par-
tition obtained, Table 1 summarizes the performance of 
these datasets for the purpose of discriminating between 
landscape and water body habitat groups. While previ-
ous results demonstrated that a GM-style approach to 
Trithemis wing-shape characterization was sufficient to 
document the existence of subtle, but consistent habitat-
based shape differences, these data were, on the whole, 
unable to separate different species based on their land-
scape or water body habitat preferences with high degrees 
of accuracy. The degrees of apparent shape overlap 
between forest and open landscape species, and between 
running and standing water species, are simply too great 
to rely on either forewing or hindwing shape alone to be 
an accurate diagnostic indicator of these environmen-
tal preferences. The fact that identification accuracies 
as high as 66 to 80 percent were delivered by our leave-
one-out jackknife analyses is, itself, quite noteworthy. We 

doubt accuracies this high could be delivered routinely 
by taxonomic experts for species identifications who had 
access only to whole-wing images, much less configura-
tion plots of 38 mathematical point locations. Matthews 
correlation coefficient [51–53] values of less than 0.75, 
plus the time and technology required to collect even a 
single set of landmark-semilandmark coordinates, how-
ever, suggest that GM-style ecomorphological analyses 
may represent a suboptimal approach to the problem 
of ecomorphological group-discrimination problem in 
Trithemis, and perhaps in many other cases as well.

Geometric morphometric (GM)‑style analyses of image 
datasets
One of the inherent limitations of classic GM approaches 
to form analysis is that it is based on the collection of—
and representation of morphologies by—relatively sparse 
sets of topologically homologous landmark and sem-
ilandmark point locations. In the Outomuro et al. analy-
sis [47], this approach required wing-form estimates be 
based on intersections between major wing veins, and 
of these veins with the wing periphery. But Trithemis 
wings are obviously composed of far more—and consid-
erably more complex—structural elements than those 
represented either by our GM-style form-representation 
system or by the system employed in the Outomuro 
et  al. investigation [47]. In order to determine whether 
a more comprehensive representation of wing morphol-
ogy might improve the ability to detect, document, and 
model differences in Trithemis habitat guilds, we con-
ducted a parallel GM-style data analysis in which wing 
images—as represented by grey-scale brightness values 
for all pixels in standardized 200 × 56-pixel (forewings) 

Table 1 Confusion matrices for the Trithemis linear discriminant results obtained from the landmark-semilandmark dataset

Groups Forested Open
Total 

Correct Group Total Accuracy Groups Running Standing
Total 

Correct Group Total Accuracy
Forested 102 (101) 40 (41) 102 (101) 142 0.72 (0.71) Running 136 (125) 46 (57) 136 (125) 182 0.75 (0.69)

Open 45 (52) 89 (82) 89 (82) 134 0.66 (0.61) Standing 31 (35) 63 (59) 63 (59) 94 0.67 (0.63)

Predicted 147 (153) 129 (123) 191 (183) 276 0.69 (0.66) Predicted 167 (160) 109 (116) 199 (184) 276 0.72 (0.67)

Accuracy 0.69 (0.66) 0.69 (0.67) 0.69 (0.66) Accuracy 0.81 (0.78) 0.58 (0.51) 0.72 (0.67)

MCC 0.38 (0.32) MCC 0.40 (0.30)

Groups Forested Open
Total 

Correct Group Total Accuracy Groups Running Standing
Total 

Correct Group Total Accuracy
Forested 116 (114) 26 (28) 116 (114) 142 0.82 (0.80) Running 149 (147) 33 (35) 149 (147) 182 0.82 (0.81)

Open 20 (26) 114 (108) 114 (108) 134 0.85 (0.81) Standing 19 (23) 75 (71) 75 (71) 94 0.80 (0.76)

Predicted 136 (140) 140 (136) 230 (222) 276 0.83 (0.80) Predicted 168 (170) 108 (106) 224 (218) 276 0.81 (0.79)

Accuracy 0.85 (0.81) 0.81 (0.79) 0.83 (0.80) Accuracy 0.89 (0.86) 0.69 (0.67) 0.81 (0.79)

MCC 0.67 (0.61) MCC 0.60 (0.55)

Landscape

Landscape

Water Body
Forewings

Water Body
Hindwings

Both raw, post hoc and leave-one-out jackknife (in parentheses) are shown. MCC: Matthews Correlation Coefficient for the confusion matrix as a whole
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and 200 × 81-pixel (hindwings) image frames—were sub-
stituted for the shape-coordinate datafiles  (Additional 
file 1: Trithemis Wing Images Archive). The fact that the 
same data-analysis procedures were employed in both the 
landmark-semilandmark and image-based sets renders 
the results obtained comparable despite slightly reduced 
datasets being employed for the wing-image analyses. 
Perhaps even more importantly, use of segmented whole-
wing images avoided the need to select any aspect of 
the wing morphology for investigation at the outset of 
the analysis as well as ensuring that those aspects of the 
morphology which could not be represented by single-
coordinate, or single-pixel, locations (e.g., color or shad-
ing patterns) were included along with those aspects that 
could.

Results obtained from the PCA-CVA analysis of wing-
image pixel values for those Trithemis images that did not 
include representations of the specimen labels (Fig.  8), 
see also  Additional file  2: Geometric Morphometrics 
(Images) results for forewing and hindwing datasets 
show that, despite the minor differences in the sample 

composition between the two analyses (a difference that 
would favor lower discrimination power), use of images 
instead of a landmark-semilandmark-based representa-
tions of wing form resulted in a marked improvement in 
between-group separations for each wing morphology 
and for each habitat contrast. Some might be tempted to 
interpret this improvement to reflect the well-know ten-
dency for high-dimensional datasets to yield artificially 
large apparent group distinctions when subjected to lin-
ear-discriminant analysis owing to the sparse distribution 
of data points in high-dimensional mathematical spaces 
(see [44, 54]). If this was the correct interpretation of our 
results this should be revealed by a bootstrap analysis of 
between-group separation relative to within-group dis-
persion via any of a number of statistical test indices (see 
[45, 46]). However, when this experiment was carried out 
using the well-known Hotelling’s  T2 test, for each of the 
four comparisons shown in Fig. 8, observed values of the 
T2 statistic fell well beyond the ranges of T2-value distri-
butions obtained from 1000 random permutations of the 
data (see Additional file  2:  Geometric Morphometrics 

Fig. 8 Frequency histograms for Trithemis forewing and hindwing shape distinctions for species preferring different landscape and water body 
habitats based on the direct assessment of wing-image datasets. Note the minimum extent of shape-range overlap and clear distinction exists 
between the central tendencies of these habitat-based wing shape differences. Statistical comparisons of the between-groups separation relative 
to within-groups dispersion using a bootstrapped version of Hotelling’s  T2 test indicate that all four comparisons are significant at well beyond the 
p = 0.95 confidence level
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(Images) CVA results for forewing and hindwing data-
sets). Based on these results it seems clear that the 
between-group separations shown in Fig.  8 cannot be 
interpreted as mere artifacts of variable number-sample 
size interactions, but rather reflect clear and consistent 
differences in the shapes of Trithemis wings for species 
that preferentially inhabit different landscape and water-
body habitats. These results support interpretations 
offered for the previous GM-style landmark-semilan-
dmark datasets and imply (1) that distinctions present 
between the wing morphologies of these different habitat 
groups include aspects not represented in the landmark-
semilandmark dataset and perhaps aspects that cannot 
be represented under GM-style morphology sampling 
conventions and (2) reliance on GM-style morphology 
sampling conventions resulted in a substantial underrep-
resentation of the actual degree of difference between a 
priori-defined Trithemis habitat groups in terms of wing-
morphology differences.

What aspects of Trithemis wing morphology might be 
responsible for the greater between habitat-groups sep-
arations shown in Fig.  8? Fig.  9 illustrates color-coded 
comparisons of shape models for the end-member coor-
dinate positions along the different habitat-group linear 
discriminant axes for both wing complexes. These shape 
models are consistent with the landmark-semilandmark 
displacement patterns (Fig.  6) for both Trithemis fore-
wings and hindwings. But owing to their more complete 
coverage of wing morphology,  contain much additional 

information about habitat-structured wing-shape 
differences.

With regard to the forewings, the dark blue line most 
evident in the lower right and upper left of the fore-
wing shape models (but present around the entire wing) 
marks the periphery of the typical “open landscape” wing 
form. The solid white areas in the regions adjacent to 
this periphery signal that, in typical “forested landscape” 
Trithemis forewings, the distal portion of the wing has 
adopted a slightly more anteriority angled orientation 
and the proximal posterior margin a more posteriorly 
expanded orientation with a more prominently expressed 
anal-area “corner”. The forewing tip also appears less 
rounded (more asymmetrical) in typical forest-dwelling 
species. The arrangement of both the internal major wing 
veins and the polygonal cells formed by the minor wing 
veins, also appears to exhibit consistently well-structured 
displacements that reflect the wing-margin alterations.

In other words, these results suggest no major reor-
ganization of the internal Trithemis forewing structure 
is part of the distinction either between open or for-
ested landscape-dwelling species or between running or 
temporary/standing water body-dwelling species. This 
too is consistent with results of the forewing landmark-
semilandmark displacement analysis results (Fig.  6). 
But whereas that previous analysis only sampled seven 
discrete internal wing landmark locations, these image-
based data facilitate a remarkably detailed examination 
of internal structures across the entire forewing at a level 
of morphological resolution that simply could not be 

Fig. 9 Color-coded comparisons of Trithemis forewing and hindwing mean shapes illustrating which wing pixels changed their brightness values 
least (blue) and most (red) along the linear discriminant vectors separating landscape (left) and water-body (right) species. As with the previous 
landmark-semilandmark results, the transitions from forested to open landscape habitats and temporary-standing and running water-body habitats 
involve essentially identical shape transitions, despite different species cohorts being placed into these habitat groups. Note that the forewing and 
hindwing areas exhibiting the greatest changes in pixel brightness values constitute either very small well specified regions (forewings) or large 
areas (hindwings) that were either not included in the landmark-semilandmark sampling scheme (forewings) or could not be so included owing to 
the fact that the wing character most consistent with between-group difference was a pigmentation region (hindwings)
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matched by landmark-semilandmark sampling schemes 
without engaging a very laborious and time-consuming 
data-collection programs.

These differences having been noted, we hasten to 
point out that variations in the forewing peripheral out-
line, along with the apparently passive general displace-
ment of major wing textural elements, are not the most 
important morphological distinctions that characterize 
these different Trithemis habitat guilds and serve to dis-
tinguish them from one another. As can be seen clearly 
in both forewing model comparisons, the largest dis-
tinctions between these habitat-guild pairs occurs in the 
extreme proximal portion of the forewings, close to the 
attachment between the wing and the body. The most 
prominent of these differences involves the posterior 
wing attachment which is composed of a complex array 
of morphological structures (e.g., distal plate, proximal 
plate, axillary plates I–III).

The reason this region plays such a distinctive role in 
between-habitat group distinction appears to be linked to 
pronounced changes in the form of the extreme proximal 
posterior forewing outline which forced this complex of 
elements to migrate inboard and posteriorly to accommo-
date and support the proximally wider forewing typical 
of forest-dwelling and running water-hunting Trithemis 
species. Resolution in this area of the wing morphol-
ogy was lost in the case of the landmark-semilandmark 
dataset because the posterior wing attachment was rep-
resented by only a single landmark (31, see Fig. 1B). This 
landmark did exhibit a large displacement relative to 
surrounding landmarks in the extreme proximal region 
of the wing (see Fig.  6), but the overall morphological 
complexity of this attachment was underestimated by the 
decision to represent it with only a single landmark loca-
tion. The desire to spread landmarks as evenly as possible 
over the morphological in question often results in com-
plex, and perhaps disadvantageous, decisions having to 
be made regarding how to represent intricate  morpholo-
gies under classic GM-style landmark-based sampling 
systems; decisions whose implications are difficult to 
appreciate when no alternative strategy for wing-shape 
sampling available. The higher, more comprehensive, 
and much easier-to-collect morphological data available 
via the use of image pixels as morphological variables 
facilitates the complete and comprehensive analysis of all 
available morphological information encoded in these 2D 
wing structures. In addition, and as these results demon-
strate, patterns of highly localized (and so taxonomically 
informative) differences in comparative morphology can 
result from image-based analyses.

Along with the posterior wing-body attachment com-
plex, our linear discriminant model-based comparison of 
between open and forested landscape-dwelling species, 

and between running and temporary/standing water 
body-dwelling species, also identified the proximate 
limbs of the costa, subcosta and radius + media veins 
as important sites of distinction between these habi-
tat groups. In the effort to ensure even landmark-sem-
ilandmark placement across the entire forewing form, 
and because of difficulties in defining a landmark point 
to represent the form of a laterally extensive wing vein, 
these sites were also not represented by any landmarks in 
our classic GM-style analysis or in those of [47].

Much the same interpretation can be offered for the 
hindwing image dataset (Fig. 9), but with a rather obvious 
addition in hindsight. Relative to the typical hindwings 
of open landscape and temporary/standing water body-
dwelling species, typical forested landscape and running 
water body-dwelling species possess hindwings that are 
more distally elongate, with greater asymmetry at the 
wing apex as well as being proximally wider. The angle 
of the peripheral hindwing is slightly greater in the latter 
groups, but not as much so as in the forewings. Overall, 
the hindwing textural elements appear to have responded 
more-or-less passively to changes in peripheral outline 
shape, though there is some suggestion that the pter-
ostigma has shifted to a position slightly more proximal 
along the wing’s anterior margin than would be expected 
as a result solely of the increase in distal hindwing angu-
larity. Nevertheless, these groups possess proximally nar-
rower hindwings. Also, similar to the forewings, both 
the anterior and posterior wing attachments, as well as 
the proximal costa, subcosta and radius + media veins 
along with (in the hindwings), the proximal cubitus vein 
exhibit pronounced variations along the transition from 
forested landscape and running water-dwelling species to 
open landscape and temporary/standing water-dwelling 
species.

Once again, as no landmarks were placed in these 
areas of the hindwing morphology, these aspects of 
hindwing variation were invisible to the previous land-
mark-semilandmark-based analysis. However, by far the 
most prominent aspect of hindwing form difference is 
the presence of the medium-to dark pigmented region 
proximal to the body characteristic of such temporary/
standing water body-dwelling species and such open 
landscape-dwelling species as T. annulata, T. arteriosa, 
T. aurora, T. kalula, T. kirbyi and T. monardi. While it 
is true that T. tropicana exhibits the darkest proximal 
color bands of all species examined here (see Additional 
file 1: Trithemis Wing Images Archive), this is an atypical 
condition for the majority of forest and running water-
dwelling species in our study sample (e.g., T. dichroa, T. 
dorsalis, T. ellenbekii, T. nuptalis). As a result, prominent 
proximal hindwing pigmentation was not considered by 
the linear analysis to be the typical state for these groups 
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as a whole, it is clearly, but non-exclusively, common 
among temporary/standing water body-dwelling species 
and such open landscape-dwelling species.

The degree to which these image-based, linear discri-
minant analyses of Trithemis forewing and hindwing 
images were successful in identifying landscape and 
water-body habitat groups is summarized in the confu-
sion matrices presented in Table 2. Comparing these with 
analogous results obtained from the GM-style landmark-
semilandmark datasets (Table 1) shows how dramatic the 
difference can be between the amount of ecomorpho-
logically important information represented by these dif-
ferent data types. For a post-hoc analysis of the training 
datasets, group-identification accuracies for the forewing 
landmark-semilandmark datasets ranged from 0.69 and 
0.72. These accuracy values rose to between 0.93 and 
0.94 for the image-based dataset. Similarly, the hindwing 
analysis group-identification accuracies ranged from 0.81 
and 0.83 for the landmark-semilandmark datasets, but 
rose to values between 0.94 and 0.97 for the image-based 
dataset.

The fact that such high accuracy values can be achieved 
based on wing morphology alone was unexpected and 
seems remarkable. However, our enthusiasm for these 
results is tempered by the results revealed in the (leave-
one-out) jackknife analysis of discriminant-function sta-
bility. While unexpectedly high and quite respectable 
accuracies were achieved by the image datasets under 
this constraint (ranging from 0.64 to 0.66 for forewings 
and 0.68 to 0.69 for hindwings), these accuracy values are 
comparable those achieved for the landmark-semiland-
mark dataset for the Trithemis forewings and inferior to 
those achieved by the landmark-semilandmark dataset 

for the hindwings. This result in no way compromises the 
statistical validity of the results achieved by the image-
based linear discriminant analysis for the individuals 
analyzed in this investigation since the bootstrap version 
of Hotelling’s  T2 test takes the possibility of overtraining 
into consideration explicitly. Nevertheless, we would not 
advocate use of these image-based forewing or hindwing 
discriminant functions as a basis for making any critical 
habitat-based identifications. This fall-off in performance 
stability was most likely caused by dramatically higher 
dimensionality of the image datasets and consequent 
need (ideally) to increase the image-dataset size dramati-
cally in order to offset problems arising from sample size-
dimensionality interactions. In addition, it may be the 
case that the somewhat poor stability results reported 
for both the landmark-semilandmark and image-based 
datasets arose not only, and not exclusively, from sample-
size issues but, indeed, from the wisdom of assuming that 
geometric distinctions between these different habitat 
groups can be modeled accurately via the use of linear 
approaches to morphological data analysis.

Machine‑learning (ML) analyses of image datasets
In order to address the issue of suboptimality induced 
by the linear modelling of ecomorphological group dis-
crimination, one further set of analyses were undertaken 
for the Trithemis datasets based on use of the deep learn-
ing LetNet-5 CNN architecture employing the embed-
ded image-contrast sampling protocol. In the case of 
the forewing analysis a total of 37,671 image contrasts, 
included both within and between habitat-group com-
parisons, were used to train the system to discriminate 
between the wing morphologies of landscape and water 

Table 2 Confusion matrices for the Trithemis linear discriminant results obtained from the image datasets

Groups Forested Open Total 
Correct Group Total Accuracy Groups Running Standing Total 

Correct Group Total Accuracy

Forested 104 (68) 7 (43) 104 (68) 111 0.94 (0.61) Running 130 (95) 9 (44) 130 (95) 139 0.94 (0.68)

Open 8 (36) 98 (70) 98 (70) 106 0.92 (0.66) Standing 4 (29) 74 (49) 74 (49) 78 0.95 (0.63)

Predicted 112 (104) 105 (113) 202 (138) 217 0.93 (0.64) Predicted 134 (124) 83 (93) 204 (144) 217 0.94 (0.66)

Accuracy 0.93(0.65) 0.93 (0.62) 0.93 (0.64) Accuracy 0.97 (0.77) 0.89 (0.53) 0.94 (0.66)

MCC 0.86 (0.27) MCC 0.87 (0.30)

Groups Forested Open Total 
Correct Group Total Accuracy Groups Running Standing Total 

Correct Group Total Accuracy

Forested 108 (82) 6 (32) 108 (82) 114 0.95 (0.72) Running 142 (106) 4 (40) 142 (106) 146 0.97 (0.73)

Open 7 (38) 106 (75) 106 (75) 113 0.94 (0.66) Standing 2 (32) 79 (49) 79 (49) 81 0.98 (0.61)

Predicted 115 (120) 112 (107) 214 (157) 227 0.94 (0.69) Predicted 144 (138) 83 (89) 221 (155) 227 0.97 (0.68)

Accuracy 0.94 (0.68) 0.95 (0.70) 0.94 (0.69) Accuracy 0.99 (0.77) 0.95 (0.55) 0.97 (0.68)

MCC 0.89 (0.38) MCC 0.94 (0.33)

Landscape

Landscape

Water Body
Forewings

Water Body
Hindwings

Both raw, post hoc and leave-one-out jackknife (in parentheses) are shown. MCC: Matthews Correlation Coefficient for the confusion matrix as a whole
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body species groups. The complete training sequence 
consisted of 1767 iterations of 64-image contrasts each 
(= a batch) with each set of iterations being regarded as 
a single training round (= an epoch). Training proceeded 
over three rounds with each round consisting of a total 
of 113,088 randomly drawn training-image contrasts. 
The order of these image contrasts was shuffled ran-
domly between rounds and training allowed to proceed 
across the entire three-round (or epoch) cycle. Thus, 
training was based on the consideration of 339,264 pair-
wise image comparisons despite the fact that only 37,671 
unique image contrasts, based on a total sample of 217 
images, were employed. Similarly, the hindwing analy-
sis employed a total of 41,223 image contrasts organized 
into three training rounds (or epochs) of 1935 iterations 
of 64-image batches. The hindwing training sequence, 
then, employed a total of 371,520 unique image contrasts 
based on a total sample of 227 images. In both cases con-
vergence was achieved with post-training error-loss val-
ues of 2.38 ×  10–5 and 1.00 ×  10–4 for the landscape and 
water-body group analyses respectively.

Results of the LeNet-5 “deep-learning” analysis of 
wing-shape differences between landscape and water-
body guilds for Trithemis forewing and hindwing images 
(Fig. 10) show that, in all four cases, the LeNet-based ML 
architecture was able to identify morphological features 
characteristic of these different ecological groups with 
100 percent accuracy. Indeed, the degree of between-
groups separation achieved—which is indicative of the 
statistical confidence the algorithm has in its results—
was such that within-group discriminant-score varia-
tion (of which there is a bit), has been obscured totally 
by selecting the same number of histogram bins used to 
illustrate the discriminant results of previous analyses.

Note that this exercise is not quite the same as ask-
ing the trained system to identify the images on which it 
was trained insofar as the system was not trained on the 
raw wing images, but rather on distance-based estimates 
of contrasts between pairs of wing images both within 
and across Trithemis habitat-guild groups. This embed-
ded training design assisted the CNN system in its task 
of focusing training on those aspects of morphological 

Fig. 10 Frequency histograms for Trithemis forewing and hindwing shape distinctions for species preferring different landscape and water body 
habitats as assessed from the wing-image datasets using the embedded LeNet-5 deep-learning algorithm. Note the complete, and quite marked, 
separation that was achieved for these habitat-based wing morphology differences in the case of both forewings and hindwings. Comparison of 
these results with those of the linear-model analyses (Figs. 7 and 10) suggests that the geometries of morphological differences between these 
habitat groups exhibit a strongly non-linear character
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variation most closely associated either with group mem-
bership (= contrasts between images belonging to the 
same genetic species) or group distinction (= contrasts 
between images belonging to different genetic species). 
Once trained though, the system can be employed to 
identify raw wing images. Consequently, it is informative 
to use the set of raw training images to evaluate trained-
system performance despite it being true that these same 
images participated in system training in the sense that 
they provided the basis for the contrasts on which system 
was trained.

As is always the case with the analysis of high-
dimensional data, the results shown in Fig. 10 might be 
regarded as suspect; the result of an overtrained learning 
system. Two arguments can be cited against this inter-
pretation. The first involves the actually dimensionality 
of the data submitted to the LeNet-5 system for analysis. 
The first step of the LeNet-5 procedure is to process the 
raw images into 40 × 40-pixel thumbnail images. This 
operation reduced the original image sizes (200 × 56 
pixels for the forewings and 200 × 81 pixels for the hind-
wings) to a standard of 1600 pixel values. Naturally, some 
morphological detail was lost during this interpolation 
process. Nevertheless, the dimensionality of the input 
data was reduced by 86 percent and 90 percent for the 
forewings and hindwings respectively. While this dimen-
sionality remains quite high by GM standards, its effect 
was offset by employing an embedded, group-contrast 
ML approach, which focuses not on the number of raw 
images in the datasets, but on the number of image con-
trasts inherent in the raw image sets. Thus, the effective 
sample sizes used to train the LetNet-5 system (37,671 

and 41,223 pairwise comparisons for the forewing and 
hindwing datasets respectively) were c. 25 times greater 
than the dimensionality of the data being discriminated. 
Therefore, there is little reason to suspect to suspect that 
system overtraining might arise in these analyses as a 
consequence of the curse of dimensionality.

In a more practical sense, however, empirical evidence 
of the stability, and appropriateness, of the results shown 
in Fig.  10 can be generated using a standard leave-one-
out jackknife strategy. Owing to the amount of time 
required to train the LeNet-5 system on a GPU-enabled 
platform (c. 1  h per total training cycle), it was consid-
ered impractical to submit the entire forewing and hind-
wing image datasets to the jackknife procedure. Instead, a 
series of 25 randomly chosen images were selected from 
each dataset and the jackknife procedure carried out on 
these 25 target images in order to estimate of the stability 
of each discriminant result. This selection was carried out 
independently for each of the habitat-guild group analy-
ses and for each of the forewing and hindwing datasets to 
ensure each estimated stability result was independent of 
the subsample selected for jackknife sequestration.

Table 3 summarizes results of these four jackknife anal-
yses for the Trithemis habitat-guild datasets. In each case 
the LeNet-5 systems, trained with the entire forewing 
and hindwing datasets minus the sequestered specimen 
images successively, were able to identify the seques-
tered specimens with 100 percent accuracy overall. These 
results indicate that discriminant analyses of each system 
calculated from the Trithemis hindwing and forewing 
datasets, partitioned either by landscape or water-body 
habitat groupings, exhibit compelling stability with no 

Table 3 Confusion matrices for the Trithemis LeNet-5 deep-learning discriminant results obtained from the image datasets

Groups Forested Open Total 
Correct

Group 
Total Accuracy Groups Running Standing Total 

Correct
Group 
Total Accuracy

Forested 111 (12) - (-) 111(12) 111 (12) 1.00 (1.00) Running 139 (16) - (-) 139 (16) 139 (16) 1.00 (1.00)

Open - (-) 106 (13) 106 (13) 106 (13) 1.00 (1.00) Standing - (-) 78 (9) 78 (9) 78 (9) 1.00 (1.00)
115 (12) 115 (13) 217 (25) 217 (25) 1.00 (1.00) Predicted 139 (16) 78 (9) 217 (25) 217 (25) 1.00 (1.00)

1.00 (1.00) 1.00 (1.00) 1.00 (1.00) Accuracy
Predicted
Accuracy 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

MCC 1.00 (1.00) MCC 1.00 (1.00)

Groups Forested Open Total 
Correct

Group 
Total Accuracy Groups Running Standing Total 

Correct
Group 
Total Accuracy

Forested 117 (14) - (1) 117 (14) 117 (14) 1.00 (1.00) Running 149 (16) - (-) 149 (16) 149 (16) 1.00 (1.00)

Open - (-) 110 (11) 110 (11) 110 (11) 1.00 (1.00) Standing - (-) 78 (9) 78 (9) 78 (9) 1.00 (1.00)
117 (14) 110 (11) 227 (25) 227 (25) 1.00 (1.00) Predicted 149 (16) 78 (9) 227 (25) 227 (25) 1.00 (1.00)

1.00 (1.00) 1.00 (1.00) 1.00 (1.00) Accuracy
Predicted
Accuracy 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

MCC 1.00 (1.00) MCC 1.00 (1.00)

Landscape

Landscape

Water Body
Forewings

Water Body
Hindwings

Both raw, post hoc and leave-one-out jackknife (in parentheses) are shown. MCC: Matthews Correlation Coefficient for the confusion matrix as a whole
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evidence of any identification inaccuracies that could 
indicate substantial—or indeed any—overtraining. Fur-
ther, these results not only agree with our previous mor-
phometric results in suggesting consistent and stable 
morphological differences exist in the wing morphologies 
of Trithemis species that inhabit open and forested land-
scapes, and that hunt above temporary/standing or run-
ning waters, they imply that these differences are more 
substantial, more consistent and more stable than was 
indicated by either the standard GM-style linear analyses 
of landmark-semilandmark data or the linear analysis of 
image pixel data. This result also suggests that these dif-
ferences may be distributed in a non-linear manner in the 
wing shape space this making them even more difficult 
to identify via simple visual inspection. Finally, since the 
species cohorts assigned to the landscape and water-body 
groups show some, but not total, identity (see Fig.  2), 
these results also appear to indicate that different sets of 
morphological features are responsible for these land-
scape and water-body ecomorphological distinctions.

Discussion
Phylogenetic covariance
Damm et al. [49] reconstructed ancestral character states 
for Trithemis landscape and water body habitat charac-
ters using the stochastic analysis method of Bollback 
[55]. While it was not possible to infer all ancestral char-
acter states with complete certainty, these results confirm 
that the transition from inhabiting open landscapes to 
forested landscapes, and from hunting above temporary/
standing waters to flowing waters, arose multiple times 
in Trithemis. Our results, coupled with those of Damm 
et al. [49] suggest that, on each of those occasions, mor-
phological changes in the phenotype were much more 
extensive than had been realized previously. These appear 
to have involved not only those well-studied characteris-
tics known to be important for species identification, but 
also features—such as wing morphology—whose innate 
complexity had prevented their detailed analysis to date. 
In addition, our results suggest that common sets of 
morphological modifications characterize species that 
occupy both ancestral and derived ecological zones. Of 
course, it is also the case that each of these derived eco-
logical radiations incorporates morphological variations 
unique to that species and/or to that radiation. Nonethe-
less, any species-specific or radiation-specific morpho-
logical trends in wing morphology were not of sufficient 
scope to obscure the subtle, but consistent, wing-form 
differences that characterize these ecological guilds.

Outomuro et  al. [47] employed the method described 
by Klingenberg and Gidaszewski [56] to assess the 
strength of the phylogenetic signal of their wing land-
mark-semilandmark data. We employed the multivariate 

extension of the K-statistic method described by Adams 
([48], see also [8]). The Klingenberg and Gidaszewski 
method [56] fits phenotypic data to the cladogram using 
squared change parsimony and then obtains an esti-
mate of the phylogenetic signal by summing the squared 
trait changes across all branches. Under this scenario 
the smaller the sum the greater the conformance with 
phylogeny. Nonetheless, as Adams [48] points out, this 
method relies on ancestral-state reconstruction which 
usually involves high levels of uncertainty (see also [57]) 
and is unsuitable for use in evaluating phenotypic traits 
owing the fact that geometric scaling is not taken into 
consideration and changes systematically as trait vari-
ation among species and/or with the number of traits 
increases. The Klingenberg and Gidaszewski method [56] 
also incorporates a matrix inversion that limits its utility 
with datasets composed of large numbers of phenotypi-
cal characteristics and comparatively small numbers of 
species. Adams’ multivariate K-statistic approach [48] 
circumvents these limitations and is designed specifically 
for use with high-dimensional phenotypic data.

Our phylogenetic covariation results are further 
supported by our calculation of the PC-based phylo-
morphospaces for both Trithemis species and their 
reconstructed ancestors based on the pruned Damm 
et al. ultrametric tree ([49], Fig. 2). As illustrated by [48], 
phylomorphospaces calculated from morphometric data 
that exhibit a strong covariance with phylogeny exhibit 
an organization in which closely-related species, along 
with their hypothetical ancestors, are grouped together 
in different regions of the Procrustes PC space with 
few tree branches crossing one another. Our Trithemis 
phylomorphospace results (Fig.  4) exhibit a pattern of 
morphospace distribution that is the opposite of this 
expectation. Based on classic-GM analysis results, closely 
related Trithemis species projected to positions in vastly 
different parts of the shape space and many inferred 
tree branches cross. Moreover, given the expectation 
that estimated ancestral wing morphologies will tend to 
occupy regions closer to the origin of the Procrustes PC 
space than the terminal taxa, the range of shape varia-
tion displayed our GM data is such that it is difficult for 
us to imagine any configuration of inferred hypothetical 
ancestral wing shapes that would be consistent with the 
expectations of a strongly supported phylogenetic covari-
ation pattern. This ordination geometry indicates that 
our results, and our interpretations of those results, are 
robust to any reasonable level of imprecision in ancestral 
node morphology inferences.

The finding that many biological datasets do not 
exhibit significant patterns of phylogenetic covariation 
is well established—including for morphometric data-
sets—and can arise for different reasons (see [57] and 



Page 19 of 29MacLeod et al. BMC Ecology and Evolution           (2022) 22:43  

references therein). Notwithstanding the results reported 
by Outomuro et  al. [47], Trithemis forewing and hind-
wing morphology appears to fall into this broad category. 
Our phylogenetic-signal results are also consistent with 
our finding of substantial ecomorphological covariation 
in Trithemis forewing and hindwing morphology given 
the fact that mappings of both landscape and water body 
characteristics of these species are distributed across the 
Trithemis cladogram. [Note: Outomuro et al. [47] report 
using their own estimate of Trithemis phylogenetic rela-
tions, but note that theirs was “similar to that previously 
published by Damm et al. (2010)” (p. 1868).]

Morphology sampling strategy
The discrepancies evident between the morphomet-
ric results reported by Outomuro et  al. [47] and ours 
are likely down to multiple differences between the two 
investigations. Note that, in a sense, this means both sets 
of results are correct representations of patterns inherent 
in the data that were collected during each investigation. 
Nonetheless, we regard these differences as being down, 
mostly, to differences in way the Trithemis wings were 
sampled.

Owing to our failure to document a significant phylo-
genetic signal in either our Trithemis forewing or hind-
wing data, we did not follow Outomuro et  al. [47] and 
subject any of our datasets to phylogenetic least-squares 
“correction”. This operation removes substantial amounts 
of information from the data and can only be justified 
when there is a clear data analysis-based concern with 
overall data independence.

Outomuro et  al. [47] found significant differences 
among forest and open landscape-dwelling species for 
males, but not females. Sexual dimorphism was not a tar-
get of our study, but our dataset was, on the whole, bal-
anced in terms of the representation of male and female 
morphologies (44% females, 38% males, 14% uncertain) 
with all species being represented by individuals from 
both sexes. Accordingly, our findings of significant wing-
morphology differences between landscape and water 
body groups imply that they pertain equally to both 
males and females, which is the more usual and expected 
pattern.

For our GM-style dataset, the difference between our 
habitat group findings and those of Outomuro et  al. 
[47] likely result the level of completeness, evenness and 
specificity in the sampling of wing morphology. The Out-
omuro et al. [47] sampling scheme focused in wing apex 
region and the anterior margin. Our sampling scheme 
achieved a much more even coverage of all parts of the 
peripheral outline. More importantly, the extended 
eigenshape sampling protocol we used to determine how 
the wing periphery should be sampled automatically 

places more semilandmark points in those regions that 
exhibit the greatest shape variation across the dataset as 
a whole [58]. This had the effect of weighting our mor-
phometric analysis toward those regions that exhibit the 
greatest amount of shape variation, thus ensuring appro-
priate advantage was taken of the information contained 
in those regions. No equivalent effort to focus the land-
mark-semilandmark data collected from Trithemis wings 
was employed in the Outomuro et al. study [47].

Our summary of the distribution of shape differences 
among the different habitat groups (Fig. 6) indicated that 
the wing periphery regions with the largest landmark/
semilandmark displacements differed for the forewings 
and hindwings. In the case of the former the largest land-
mark/semilandmark point displacements occurred mid-
wing along the posterior, or trailing, margin, along the 
distal anterior margin, and along the proximal posterior 
margin, especially very close to the posterior wing attach-
ment. These regions were weakly and unevenly sampled 
in the Outomuro et al. investigation [47]. Similarly, in the 
case of the hindwings, the largest displacements occurred 
along the proximal posterior margin, especially close to 
the point of maximum wing-periphery curvature (= the 
prominent proximate posterior “corner”), followed by the 
proximate anterior wing margin and the posterior mid-
wing margin. Again, these are areas where the Outomuro 
et al. scheme [47] obtained few, and unevenly distributed, 
samples of morphological variation.

Aside from the implications our results have for under-
standing the ecomorphology of Trithemis, the discrep-
ancy between the results we and Outomuro et  al. [47] 
obtained with our landmark-semilandmark GM analyses 
make a larger and more general point. The results of any 
morphometric investigation are determined completely 
by the sample that is obtained. What you sample deter-
mines what results you get. Morphometric representa-
tions of biological forms, especially those sampled by 
sparse sets of landmark-semilandmark points, cannot, 
should not, and must not be mistaken for the morphol-
ogies of the individuals or species themselves and the 
results generated therefrom pertain only to those aspects 
of the morphology  that were  sampled, not to the over-
all morphology itself (see also [59] where this issue was 
problematic). This distinction should be kept in mind, 
especially if negative results are obtained from any mor-
phometric hypothesis test.

There are, of course, many ways to represent any com-
plex morphological structure. All systematists, and 
all morphometricians, strive to inspect or obtain ade-
quate and accurate representations of the morpholo-
gies or structures they investigate. In some cases, and 
for some structures, this is straightforward. In others it 
is exceedingly difficult, especially at the outset of a new 



Page 20 of 29MacLeod et al. BMC Ecology and Evolution           (2022) 22:43 

investigation when little is known about patterns of vari-
ation anywhere in the forms or structures of interest. 
If the question under examination is specific and tied 
intrinsically to an explicit aspect of the morphology in 
question (e.g., Are the forewings of male Trithemis annu-
lata longer than those of females of the same species?) 
the data relevant to the hypothesis test can be obvious. 
But if the question under examination is non-specific and 
not tied intrinsically to any particular aspect of the mor-
phology in question (e.g., Do the forewings of Trithemis 
species that inhabit forested landscapes differ in some 
way from those that inhabit open landscapes?) it often is 
difficult to know what to compare, what data to collect 
from those aspects of the morphology judged suitable for 
comparison, and/or how to interpret the results of data-
analysis procedures in terms of the original question(s) of 
interest.

In attempting to address this more difficult question, 
Outomuro et  al. [47] chose a wing morphology sam-
pling scheme that achieved a representation of Trithemis 
forewing and hindwing morphology, but did so in quite 
an uneven and approximate manner. Their approach 
reflected conventions that have grown up around GM 
which prioritizes the representation of complex struc-
tures thorough the digitization of small sets of indepen-
dently defined landmark points. Originally, some GM 
practitioners even objected to the collection and use of 
boundary outline semilandmarks (e.g., [12, 60]) though 
these data are now collected and analysed routinely by 
GM practitioners, largely for practical reasons (e.g., [61]). 
But even given the (belated) acceptance of semilandmark 
points as useful means of sampling complex morpholo-
gies, we suspect few morphometricians would have been 
entirely comfortable with the sampling scheme devised 
by Outomuro et  al. [47] as either a comprehensive, or 
geometrically accurate, representation of a Trithemis 
dragonfly wing. Their scheme quantified certain aspects 
of the wing morphology, but ignored the vast majority of 
the information available.

Data analysis and statistical testing
Of equal importance to the issue of sampling adequacy is 
the understanding that different data-analysis procedures 
differ in the assumptions they make about the data that 
have been collected, the mathematical models they apply 
to those data, and the power those models have to reveal 
patterns of similarities and differences either within 
pooled datasets or (especially). This is especially impor-
tant when the point of the analysis is to compare groups 
defined a priori.

The GM revolution was actually a synthesis between 
three aspects of morphometric practice that had been 
pursued more-or-less separately until the mid-1980s: 

(1) the representation of form through the use of sparse 
sets of topologically corresponding landmark-points 
(that served as the end-definitions of linear distances 
originally), (2) the alignment of these geometric point-
locations through use of a least-squares Procrustes fitting 
algorithm, and (3) the representation of patterns of mor-
phological variation via linear multivariate data analy-
sis. While advances in addition to these did figure in the 
development of geometric morphometrics (e.g., centroid 
size, bending energy-based shape decomposition, graphic 
representation of shape deformation via use of thin-plate 
splines), and acknowledging that the GM synthesis has 
grown since its original formulation (e.g., admission of 
semilandmarks as a useful morphology-sampling con-
vention), these three core aspects are those most often 
used and referred to in GM investigations. This synthesis 
was powerful, enabling morphological analysis to be pur-
sued quantitatively and at levels of detail, coherence and 
interpretability unprecedented by the formerly separate 
schools of morphometric practice. Owing to that power, 
the geometric morphometric synthesis has proven to be 
highly effective in addressing a wide range of problems in 
systematic and comparative morphology, as well as being 
quite popular among the communities of biological, 
paleontological, systematics and evolutionary research-
ers. However, the GM approach, like all data-analysis 
approaches, has its weaknesses as well as its strengths. 
Perhaps even more importantly, the field of data analysis 
rarely remains static for long.

Over the last 20–25 years an alternative—some might 
say a rival—to GM has appeared in the form of ML. 
Unlike GM, ML approaches were not developed by 
researchers whose primary interest was in the analysis of 
biological morphology. Nevertheless, one of the primary, 
and most popular, uses of ML approaches, as well as one 
that spurs much ongoing ML research, has been the abil-
ity of these algorithms to find previously unsuspected 
patterns in all sorts of data, but especially in morphologi-
cal data.

In many ways, ML represents a natural complement 
to GM. Whereas GM was designed to operate on a spe-
cific type of morphological data (= configurations of 
landmark point locations), ML can be used to analyze 
any sort of data. Thus, whereas the application of GM is 
limited to those situations in which forms can, reason-
ably, be represented by sparse configurations of point 
coordinates, ML opens the door to the consideration of 
a much wider range of morphological data and morpho-
logical problems. To date the overwhelming majority of 
GM analyses published in the biological, paleontological, 
systematic and evolutionary literature have been based 
on linear data-analysis models. However, ML approaches 
can be applied readily to situations in which the optimal 
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models are non-linear, even if that is not known to be the 
case at the outset of an investigation.

At present, ML models are inferior to their GM coun-
terparts in their ability to be queried and so used to 
identify which aspects of a set of morphologies are con-
tributing disproportionately to the structure of sam-
ple variance. To be sure, attempts have been made to 
improve the interpretability of ML models (see [62] for 
a review). But owing to the level of specificity required 
of diagnostic morphological features that are useful in 
biological, paleontological, ecological, evolutionary and 
taxonomic contexts, coupled with spatial uncertainties 
as to where the boundaries of such features might lie, the 
relative sizes of the regions identified by currently avail-
able ML-interpretation algorithms are too large to be of 
much use in these contexts (see [63, 64] for examples). 
Machine-learning interpretation approaches can be use-
ful in ensuring group-diagnostic image features belong to 
parts of the image that pertain directly to the specimens 
being imaged (e.g., as opposed to some aspect of the 
background). Beyond this, however, it appears we must 
await further developments in the field of ML interpreta-
tion before such algorithms can make substantial contri-
butions to revealing the morphological features they are 
sensing in order deliver their superior group-characteri-
zation and group-identification capabilities. This having 
been said, the tools available for interpreting the results 
of GM analyses are also, by no means, straight-forward, 
easy to use nor exploited to their full potential by most 
practitioners.

Inevitably some will claim that GM is their preferred 
option for generalized morphological data analysis, either 
because, despite its limitations, they regard their study 
group(s) and research questions as being well-served by 
this approach and/or because they wish to retain a “geo-
metric focus” in their analysis. In response we can only 
point out that all analyses of morphological data are 
“geometric” in character. From the results we have pre-
sented above it is unquestionably clear that the classic 
GM approach, when applied to the analysis of Trithemis 
wing-shape data, was the one that performed least well 
in finding, summarizing, and testing sets of characteris-
tics that could be used to answer the question of whether 
shape variance was distributed among Trithemis land-
scape and water-body ecological guilds in a continuous 
or disjunct manner. What is also clear is that this com-
parative finding is neither an unusual, nor an exceptional, 
result (e.g., [45, 46, 59, 65–74]).

In terms of statistical testing, Outomuro et  al. [47] 
relied on standard parametric statistical tests whose 
accuracies rely on assumptions regarding the form of 
data distributions and equivalence of variances among 
variables, all of which are rarely met by morphometric 

data. In contrast, our study employed bootstrapping and 
jackknife variants of standard statistical and data-analysis 
tests to ensure the results of our hypothesis tests were 
robust to violations of distributional assumptions.

Conclusions
In seeking to understand the structure of the natural 
world it is important to appreciate the roles played by 
phylogenetic inertia—that an absence of divergent selec-
tion pressure can fail to produce substantial morpho-
logical divergence (hence “cryptic” species) even after 
speciation has taken place—and adaptive environmental 
diversification—that can lead to substantial morphologi-
cal diversification even among sister species—in creating 
and maintaining that structure. Prior to the publication 
of Felsenstein [2], phylogeny was thought to contribute 
little more than anecdotal historical information to com-
parative biology and less still to the quantitative analysis 
of organismal morphology. However, following what can 
only be described as Felsenstein’s seminal description 
of the problems inherent in taking a non-phylogenetic 
approach to comparative biology, the systematic, bio-
logical and evolutionary research communities were 
converted, more-or-less rapidly, to the idea that "noth-
ing in biology makes sense except in the light of phylog-
eny” ([75], p. 237; see also [57]). Today, the pendulum has 
swung decidedly in favor of a phylogenetically informed 
approach to comparative biology, to such an extent that 
“many comparative biologists [seem to] believe that phy-
logeny is not only necessary but also sufficient to answer 
any evolutionary question” ([57], p. 711). Has compara-
tive biology’s late twentieth century course correction 
gone too far? Certainly, patterns of ancestry and descent 
are fundamental to the analysis of all biological data. But 
are there cases in which the structure of phylogenetic 
relations might provide little insight into understanding 
the morphological superstructure of the natural world; in 
which the demands of the environment may, indeed, have 
played the dominant role? Just as importantly, which are 
the best tools to use in determining whether the ranges 
of variation in complex biological structures are the same 
as, or different from, those same structures as manifested 
by another group; whether there is any pattern of distinc-
tion that requires explanation?

In our investigation of Trithemis forewing and hind-
wing morphology we set out to address these twin 
concerns of comparative morphology in an ecomor-
phological context using some of the most up-to-date, 
sophisticated and powerful tools available currently. 
With respect to the issue whether a statistically signifi-
cant pattern of phylogenetic covariation exists in our 
sample of 276 mixed male and female individuals rep-
resenting 27 Trithemis species (including species from 
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across Africa, Madagascar, and China), analysis of GM-
style landmark-semilandmark data using the multivariate 
extension of the Kmult statistic failed to detect any signifi-
cant pattern of covariation between species-specific fore-
wing or hindwing shapes. This result contrasted with the 
result obtained previously by Outomuro et  al. [47] who 
used a different phylogenetic signal test, but is supported 
by the analytic superiority of the Kmult test and by PCA-
based phylomorphospace results derived from the same 
dataset.

With respect to tests for ecomorphological differ-
ences in Trithemis forewing and hindwing morphology 
between landscape and water body ecological guild, lin-
ear discriminant analyses of classic GM-style landmark-
semilandmark data, direct linear discriminant analyses of 
wing images, and an embedded image contrast-trained, 
“deep-learning” CNN analyses of wing images all 
detected statistically significant shape differences 
between both habitat-guild partitions for both wing 
complexes. The best between-groups separations were 
achieved by the embedded image contrast-trained CNN 
analyses of image data, the worst by linear discriminant 
analyses of classic GM-style data. These results suggest 
that shape differences between both habitat groups are 
not focused solely on the wing outline and are distributed 
geometrically in a non-linear manner. Our ecomorpho-
logical results also contrast, to some extent, with those 
reported previously by Outomuro et al. [47] who used a 
different, though GM-based, morphometric data collec-
tion and data-analysis strategy. Regardless, we believe 
our results are more representative of the actual situa-
tion in Trithemis because (1) a greater amount of wing-
morphology information was included in our analyses 
and (2) we obtained consistent results from the analysis 
of radically different wing data sets and radically different 
data-analysis strategies. Our ecomorphological results 
are also consistent (3) with expectations of the mapping 
of these ecological habitat guilds onto the Damm et  al. 
[49] Trithemis phylogeny.

In Trithemis, radiation from the ancestral ecological 
conditions of open landscapes and temporary/stand-
ing water bodies, into forested landscapes and running 
water bodies, occurred frequently and at multiple times 
in this genus’ evolutionary history. Traits that evolve 
frequently and substantially within taxa are usually 
responding to the differing needs of life under different 
selective regimes [57]. This principle is not sex-specific, 
and would be expected to apply equally to males and 
females, as our results indicate was the case of Trithemis. 
Moreover, highly functional aspects of the phenotype, 
such as wings, are subject to mechanistic, physical prin-
ciples of optimization that are similar within similar envi-
ronments, but differ across different environments. This 

is a very well-established principle in the comparative 
morphology of bird wings, bat wings and insect wings, 
including members of the Odonata (see above). This 
principle is also consistent with our finding of little phy-
logenetic covariation in Trithemis wing-shape data.

In raising criticisms regarding the adaptationist para-
digm, Gould and Lewontin [1] viewed phylogenetic 
ancestry as exerting a constraint on morphological 
change and proposed that this hypothesis be considered 
a possible alternative to the direct, adaptive modifica-
tion of each aspect of a species’ morphology, physiology, 
behavior, etc. to meet some environmentally mandated 
challenge. But as had been noted repeatedly by a num-
ber of researchers (e.g., [57, 76, 77]) phylogeny is not a 
constraint; rather, it is a pattern. The fact that two closely 
related species might exhibit similar morphologies can-
not necessarily be attributed to the closeness of their 
phylogenetic relation any more than the fact that mor-
phological differences between distantly related species 
can be attributed necessarily to their phylogenetic dis-
tance. In both cases it is a trivial exercise to cite numer-
ous counter examples. Species remain close to, or diverge 
widely from, one another because of the manner in which 
they have responded to the challenges selection pres-
sures have exerted upon them. These pressures need 
not cause every aspect of their morphologies to change 
and genetic, as well as mechanistic, linkages constrain 
the range of realizable options that exist for every spe-
cies. Phylogenies are indispensable for understanding the 
structure of the living world. But phylogenetic patterns of 
ancestry and descent, by themselves, cannot provide an 
adequate process-level explanation for any aspect of that 
structure. Neither can associations between morphology 
and phylogeny be blithely regressed out of morphological 
datasets and dispensed with as though they were some 
sort of uninteresting nuisance factor. Instead, such asso-
ciations should be regarded as constituting a category, or 
mode, of variation existing within morphological datasets 
that demands its own set of process-level explanations; 
separate from, but perhaps linked to, those explanations 
proposed for features not closely associated with phylo-
genetic patterns.

In addition to these considerations, it is important to 
note that the quality of any morphological analysis will 
depend critically on the data collected from particular 
sets of morphologies (e.g., structures, characters, species) 
and the tools used to discover patterns in those data; pat-
terns that can be compared to the pattern of phylogenetic 
ancestry and descent as well as to aspects of variation in 
the natural environment. If mathematics can be regarded, 
as it is by many mathematicians, as the study of patterns 
in numbers [78], biology can be thought of as the search 
for patterns in the natural world [79]. Indeed, it is the 
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existence of these patterns that provides not only the 
subject matter for biological study, but the evidence that 
deterministic processes or factors responsible for these 
patterns exist. If such patterns did not exist—if every-
thing in nature simply graded continuously and insensi-
bly into everything else—it would not only be impossible 
to conduct a truly scientific biological investigation, it 
would be pointless.

Mathematical data analysis and statistics (the two are 
not synonymous) are tools that, when used properly, 
can be employed to discover patterns in data that can 
aid biologists in their attempts to understand the living 
world. They are not, substitutions for, or means through 
which careful reasoning by researchers with specialist 
knowledge and experience can, or should, be overruled. 
Rather they can, are, and should, be used to aid and sup-
port biological reasoning by extending the powers of 
human senses and perception; by making patterns invis-
ible to the unaided eye visible so they can be identified, 
discussed and interpreted.

In the same way as new and progressively more power-
ful statistical tools are being made available to find and 
compare patterns within morphological datasets and 
between morphological data and other sources of infor-
mation, new tools have recently been made available for 
discovering patterns in biological data; ML being perhaps 
the latest and most intriguing example. As we hope we 
have demonstrated, the development of new and much 
more sophisticated ways of applying quantitative data-
analysis procedures to the task of identifying patterns 
of variation in morphological data promises, at the very 
least, to invigorate the study of morphology;  and perhaps 
also to revolutionize our appreciation for the amount of 
useful information that has been encoded in organismal 
morphologies of which, to this point, we have scarcely 
been aware.

Methods
Materials
Trithemis is a large genus (c. 50 species) of mainly Afri-
can dragonflies referred to commonly as “dropwings” 
owing to their habit of holding their wings at a negative 
angle to their bodies, rather than horizontally, when at 
rest. In this investigation 27 Trithemis species (Table  4) 
were assessed, all of which were sourced from the insect 
collections of The Natural History Museum (London). 
Images of both forewings and hindwings from males 
and females of each species were collected using a low-
magnification, digital SLR-based photo-microscopy 
system supplied by the museum. All images were taken 
from mounted specimens with a universal stage being 
employed to correct the orientation of each specimen 

prior to imaging so that the wing surface was normal to 
the microscope’s optic axis.

During photography every effort was made to block out 
the specimen label, which was impaled on the mount-
ing pin beneath each specimen, by placing a white card 
over the label prior to image capture. In the case of some 
specimens, however, this operation could not be per-
formed without risking damage to the specimen. Photo-
micrographs of these specimens were taken and used to 
assemble GM datasets where imperfections in the image 
were not relevant to the collection of landmark or sem-
ilandmark data. However, specimen images that included 
aspects of the label were excluded from the image data-
set. Preferred landscape and water body assignments 
for these species were made according to the ecological 
information provided by [49] and [47], with the addition 
of data for T. nigra based on [80].

Image processing
All forewing and hindwing images were segmented from 
dorsal view, whole-specimen images, mounted in a vari-
ably sized image frame against a flat white background, 
converted from 8-bit RGB color to an 8-bit greyscale for-
mat and adjusted for consistent average brightness and 
contrast. In all cases the two pairs of wings present on 
each individual were inspected and the best preserved/
imaged forewing and hindwing set selected to represent 
the specimen. In those cases where the best preserved/
imaged wing was collected from the body’s right side the 
wing image was mirrored to the left-side orientation to 
render the wing pose comparable across all species. Once 
these image-processing and pose-standardization proce-
dures had been carried out, the processed wing images 
were written to separate image files in the non-com-
pressed TIFF file format to form an archive of Trithemis 
forewing and hindwing images. Additional file 1:  plates 1 
and 2 were assembled from these archive images.

Classic GM‑style analysis
In order to compare our Trithemis ecomorphologi-
cal wing shape results to those of Outomuro et  al. [47] 
a GM-style morphometric analysis was carried out on a 
combined landmark-semilandmark dataset that included 
a set of internal landmarks as well as peripheral outline 
landmarks and semilandmarks. Figure  1B illustrates the 
positions of these landmark and semilandmark point 
locations on a representative set of Trithemis annulata 
wings (see Additional file  2: formal definitions of each 
landmark/semilandmark). One advantage of working 
with a group whose species exhibit such similar fore-
wing and hindwing morphologies is that the same land-
mark and semilandmark points can be located on both 
the forewings and hindwings of every specimen in the 
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dataset. This ensured comparable geometric coverage, 
thus facilitating comparisons across wing types as well as 
across habitat groups. Use of internal landmarks, periph-
eral outline landmarks and peripheral outline semiland-
mark point locations to characterize wing morphologies 
also ensured that a better representation of localized 
morphological similarities and differences across spe-
cies was obtained than would have been the case if only 
peripheral outline landmarks or semilandmarks had 
been employed. The inclusion of internal landmarks 
added information to the analysis and assisted in making 
the collection of geometric information across the wing 
forms as even as possible.

In all, 13 landmarks located at the origins, intersec-
tions or peripheral termini of major wing veins , and 25 
semilandmarks located in five different peripheral out-
line zones defined by landmarks 1, 6, 13, 20, 25 and 31, 

were used to represent wing form in the classic GM-style 
analysis. The number and location of peripheral semilan-
dmarks were specified using the extended eigenshape 
protocol of MacLeod ([58, 81]; see also [82]) which allows 
the sample to determine how many equally-spaced sem-
ilandmarks are required to represent the geometry of 
outline zone peripheries to a consistent level of geomet-
ric accuracy across all specimens. Under the sampling 
scheme employed for this investigation all outline periph-
ery zones were represented to an accuracy of greater than 
95 percent.

Following collection of these data forewing and hind-
wing landmark-semilandmark configurations were 
aligned and scaled using the generalized least-squares 
Procrustes procedure [83]. The aligned shape coordinates 
were then used to produce the species-specific mean 
shape configurations that were employed in the test for 

Table 4 Trithemis species, sample sizes and habitat assignments used in this investigation

Sample Size (n)

Forewings Hindwings

Species Landmarks Images Landmarks Images Landscape Water Body

Trithemis aenea 4 4 4 4 Forested Running

Trithemis aequalis 3 – 3 1 Open Running

Trithemis annulata 20 12 20 13 Open Standing

Trithemis arteriosa 10 10 10 10 Open Standing

Trithemis aurora 10 10 10 10 Open Standing

Trithemis bredoi 10 10 10 10 Forested Running

Trithemis dichroa 16 12 16 8 Forested Running

Trithemis donaldsoni 10 9 10 9 Open Running

Trithemis dorsalis 10 1 10 6 Open Running

Trithemis ellenbekii 11 4 11 6 Open Running

Trithemis festiva 10 2 10 5 Open Running

Trithemis furva 18 12 18 15 Open Running

Trithemis grouti 10 9 10 10 Forested Running

Trithemis hecate 8 7 8 8 Open Standing

Trithemis imitata 10 7 10 3 Open Standing

Trithemis kalula 10 10 10 10 Open Standing

Trithemis kirbyi 19 15 19 17 Open Standing

Trithemis monardi 9 9 9 9 Open Standing

Trithemis nigra 10 10 10 10 Forested Running

Trithemis nuptualis 10 6 10 5 Forested Running

Trithemis persephone 5 5 5 5 Forested Standing

Trithemis pluvalis 8 8 8 8 Open Running

Trithemis purinata 10 10 10 10 Forested Running

Trithemis selika 8 8 8 8 Open Standing

Trithemis stictica 10 10 10 10 Open Running

Trithemis tropicana 10 10 10 10 Forested Running

Trithemis weneri 7 7 7 7 Open Running

Total 276 217 276 227
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phylogenetic covariation in wing shapes, against the 
Trithemis ultrametric tree provided by Damm et al. ([49], 
Fig.  2). The multivariate generalization (Kmult) of the K 
statistic  [84] described by Adams [48] was employed to 
facilitate the test of phylogenetic covariation in the wing-
shape datasets.

In order to determine whether the shapes of Trithemis 
forewings and/or hindwings, as represented by these 
landmark-semilandmark shape configurations, exhib-
ited consistent and statistically significant shape differ-
ences between species found in contrasting landscape 
and water body habitats, the dimensionality of the land-
mark-semilandmark shape-coordinate data was first 
reduced by subjecting it to a covariance-based PCA (see 
Additional files 3 for listings of the computer codes used 
for all data analyses). Component scores on the set of 
eigenvectors sufficient to account for 95 percent of the 
pooled-sample shape variation were retained and sub-
mitted to secondary CVA using the landscape and water 
body habitat assignments as the grouping variable. Pro-
jections of the PCA configuration-shape scores onto the 
single linear discriminant vector enabled visualization of 
the degree to which shape distinctions existed among our 
Trithemis forewing and hindwing shape configurations. 
A number of recent authors in various natural history, 
ML, and archeological fields have employed a combined 
PCA-CVA approach similar to the one used in this inves-
tigation to facilitate the analysis of group separations in a 
linear multivariate context (e.g., [45, 46, 85–87]. Recently 
Rohlf [54] has reviewed data-analysis strategies for cop-
ing with high-dimensional data in group-discrimination 
contexts and identified this PCA-CVA technique as one 
that can possibly circumvent the “curse of dimensional-
ity” issue.

Geometric interpretation of the between-habitat guild 
wing-shape distinctions was facilitated by back-project-
ing CV scores into the PCA space and then back-pro-
jecting those coordinate positions into the space of the 
original shape variables (see [88] for a description of this 
technique). The last step of this procedure involved test-
ing the statistical significance of the observed difference 
in mean vector orientations for the landscape and water 
body groups using a bootstrapped version of the stand-
ard Hotelling’s  T2 test [88, 89].

Direct GM‑style analysis of images
In order to compare the GM-style analysis of wing mor-
phology as represented by a sparse set of landmarks and 
semilandmarks with a mathematically equivalent direct 
analysis of wing images, subsets of these same forewing 
and hindwing images that did not include labels were 
processed to standardize their frame sizes, image sizes, 
orientations, and pixel color scales in order to render 

their images geometrically comparable. This processing 
operation also involved a reduction in the overall sizes of 
the image fames in order to reduce pixel redundancies, 
boost each image’s geometric information content, and 
perform an initial reduction in the image datasets’ dimen-
sionality. After processing, forewing images all occu-
pied the central region of a 200 × 56 pixel, white image 
frame and the hindwing images a 200 × 81 pixel, white 
image frame. Despite the high level of resolution reduc-
tion entailed by this procedure, all taxonomically criti-
cal aspects of wing morphology remained clearly visible 
on the processed images including the forms of the wing 
outline, all major wing veins and the size, location and 
intensity of the of colored areas (e.g., distal pterostigma, 
see Fig. 1A; proximal darkly pigmented hindwing regions 
of T. tropicana and T. kirbyi, the lightly pigmented 
regions of T. annulata and T. bredoi, see Additional file  
1: Plate 2). Once the greyscale pixel brightness values had 
been exported and reformatted into a data matrix these 
were submitted to the same PCA-CVA-based data-analy-
sis procedure employed in the GM-style analysis to facili-
tate direct comparison with the landmark-semilandmark 
morphology-characterization results.

Embedded, image‑contrast deep learning analysis 
of images
In order to determine whether morphological distinc-
tions between habitat categories could be improved 
and/or clarified by a non-linear discriminant analysis 
procedure, a “deep learning” convolution neural net-
work (CNN) was employed to analyze the image data-
sets directly. Our CNN architecture was based on the 
LeNet-5 system [19–21], which is arguably, the CNN 
that sparked initial interest in “deep learning” using con-
volution-based, multi-layer artificial neural networks. 
The LeNet-5 architecture achieved 98.5% accuracy when 
tested on the 10,000 test images included in the 70,000-
image Modified Nation Institute of Standards and Tech-
nology (MNIST) image database (see http:// yann. lecun. 
com/ exdb/ mnist/) after being trained on the remaining 
60,000 28 × 28 pixel digital images.

All CNNs consist of an input layer that receives the 
information to be processed (in our case images) and an 
output layer that makes the final allocation of the pro-
cessed data into one of a number discriminant vectors. 
Between these a variable number of connected or “hid-
den” layers exist that process the data by (1) accepting 
the information from the input or previous layers, (2) 
evaluating this information for patterns consistent with 
those established by a previously identified training set of 
images that have been allocated to their appropriate cat-
egories (in our investigation landscape and water-body 
habitat) and (3) passing the processed data on to the next 

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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layer. This layered design is used to overcome the prob-
lem of full connectivity which is impractical to apply to 
large images, but can be applied successfully to small 
images. For our analysis we adopted the standard LeNet 
default of autoencoding, or “stepping down” the input 
image resolutions to, in our case, a set of 40 × 40, 8-bit 
grayscale pixel values as an initial processing step.

Although LeNet-5 is but one of several advanced, gra-
dient-descent CNN architectures for image-based auto-
mated identification applications (see https:// resou rces. 
wolfr amclo ud. com/ Neura lNetR eposi tory), it remains 
one of the most efficient, best understood, and most 
flexible of the CNN architectures available currently. 
The LeNet architecture also has advantages over more 
elaborate CNN designs in that their complexity requires 
(optimally) that they be trained with vast numbers of 
example images in order to avoid the ‘curse of dimen-
sionality’ problem [43]. The LeNet architecture is relative 
simple—containing only eight processing layers—and so 
better suited to the analysis of small training sets, espe-
cially if only a limited number of group differences are of 
interest. The overall structure of the LeNet-5 architecture 
employed in this investigation is listed in Table 5.

Even after selecting a relatively simple CNN design, 
obtaining a sufficient number of example images can be 
challenging. While our image dataset is relatively large by 
biometric and morphometric standards, it is quite small 
in the context of ML analysis. Such datasets typically 
result in overtrained systems that are unreliable when 
asked to identify genuine unknown specimens.

Potentially, this problem can be circumvented by opting 
for training as an embedded learning system, in which the 

Table 5 Layer structure of the LeNet-5 CNN employed in this 
investigation

Sizes refer to pixels for layers 1–7, variables for layers 8–10

Layers Type Parameters

Image

1 Input 3-tensor (size: 1 × 28 × 28)

2 Convolution 3-tensor (size: 10 × 25 × 25)

3 Ramp 3-tensor (size: 10 × 25 × 25)

4 Pooling 3-tensor (size: 10 × 12 × 12)

5 Convolution 3-tensor (size: 20 × 9 × 9)

6 Ramp 3-tensor (size: 20 × 9 × 9)

7 Pooling 3-tensor (size: 20 × 4 × 4)

8 Flatten Vector (size: 320)

9 Linear Vector (size: 2)

10 Output Vector (size: 2)

Fig. 11 Example of embedded, paired comparison within Trithemis species’ hindwings, including within landscape group contrasts (vertical 
arrows), within water-body group contrasts (horizontal arrows) and between landscape and water-body group contrasts (diagonal arrows). The 
existence of a multitude of paired comparisons such as these, if they are used as the basis for a morphological assessment of within-group similarity 
and between-group difference can, in many instances, counteract the effect of inherently small sample sizes. However, in order for this strategy to 
produce results that can be used with confidence care must be taken either to obtain a representative sample of morphological variation and to be 
circumspect in interpreting the results of data analyses

https://resources.wolframcloud.com/NeuralNetRepository
https://resources.wolframcloud.com/NeuralNetRepository
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object is not to learn the characteristics of a priori-defined 
groups themselves but, rather, patterns of explicit simi-
larities and differences between pairs of images that either 
do, or do not, belong to the same training group (Fig. 11). 
Recent published applications of this strategy have focused 
on systems for describing differences between image pairs 
drawn from large datasets using text-based descriptors [90, 
91] as well as image-based analyses [33, 45, 46, 59, 71, 92]. 
In terms of the analysis of small-to-modestly sized sam-
ples, there are many advantages to this approach, includ-
ing relaxation of the use of single assessments of individual 
forms insofar as all, or most, pairwise comparisons between 
images in a dataset can be employed for CNN training. 
Despite the fact that our image sample contains only 217 
and 227 individuals (Table 4), a total of 46,872 and 51,302 
pairwise comparisons can be drawn from them: including 
large numbers of within-group and between-group pairs. 
By focusing CNN training on differences among images of 
the same group, and between images of different groups, 
training can proceed more efficiently than would be pos-
sible otherwise.
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