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Environmental differences explain subtle 
yet detectable genetic structure in a widespread 
pollinator
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Abstract 

Background: The environment is a strong driver of genetic structure in many natural populations, yet often 
neglected in population genetic studies. This may be a particular problem in vagile species, where subtle structure 
cannot be explained by limitations to dispersal. Consequently, these species might falsely be considered quasi-pan-
mictic and hence potentially mismanaged. A species this might apply to, is the buff-tailed bumble bee (Bombus ter-
restris), an economically important and widespread pollinator, which is considered to be quasi-panmictic at mainland 
continental scales. Here we aimed to (i) quantify genetic structure in 21+ populations of the buff-tailed bumble bee, 
sampled throughout two Eastern European countries, and (ii) analyse the degree to which structure is explained by 
environmental differences, habitat permeability and geographic distance. Using 12 microsatellite loci, we character-
ised populations of this species with Fst analyses, complemented by discriminant analysis of principal components 
and Bayesian clustering approaches. We then applied generalized dissimilarity modelling to simultaneously assess the 
informativeness of geographic distance, habitat permeability and environmental differences among populations in 
explaining divergence.

Results: Genetic structure of the buff-tailed bumble bee quantified by means of Fst was subtle and not detected by 
Bayesian clustering. Discriminant analysis of principal components suggested insignificant but still noticeable struc-
ture that slightly exceeded estimates obtained through Fst analyses. As expected, geographic distance and habitat 
permeability were not informative in explaining the spatial pattern of genetic divergence. Yet, environmental variables 
related to temperature, vegetation and topography were highly informative, explaining between 33 and 39% of the 
genetic variation observed.

Conclusions: In contrast to previous studies reporting quasi-panmixia in continental populations of this species, we 
demonstrated the presence of subtle population structure related to environmental heterogeneity. Environmental 
data proved to be highly useful in unravelling the drivers of genetic structure in this vagile and opportunistic species. 
We highlight the potential of including these data to obtain a better understanding of population structure and the 
processes driving it in species considered to be quasi-panmictic.
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Background
Detecting genetic population structure and its underlying 
causes is crucial to better understand basic evolutionary 
ecological processes and how these are affected by human 
actions, as well as to improve conservation strategies. 
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Population structure is often inferred using methods 
that are only based on genetic data, and do not take into 
account the geographic relationships between popula-
tions [1]. These methods perform well when population 
structure is strong, but may fail to correctly detect weak 
structure. Considering spatial relationships can help to 
improve the detectability of weak structure [2–4], but 
mainly when there are small but distinct genetic breaks 
in geographic space [5]. Gradually changing genetic 
population structure is, however, notoriously difficult to 
detect, which might even be further complicated when 
structure is subtle (e.g. [5, 6]). As a consequence, species 
exhibiting such patterns might incorrectly be considered 
quasi-panmictic.

Population structure results of a balance between gene 
flow, genetic drift, natural selection, and mutation. When 
dispersal becomes difficult, gene flow is reduced. This 
may be the case with increasing distance, or when habi-
tats become difficult to traverse, resulting in patterns of 
genetic divergence known as isolation by distance (IBD, 
[7]) and isolation by resistance (IBR, [8]). Moreover, gene 
flow may also be reduced due to decreased fitness of 
dispersing individuals that are maladapted to new envi-
ronmental conditions they encounter [9]. Following a 
decrease in genetic connectivity, populations may start to 
diverge by means of genetic drift, eventually resulting in 
selective processes becoming apparent in per se neutral 
markers as a pattern of isolation by environment/ecol-
ogy (IBE, [10, 11]) or isolation by adaptation (IBA, [12]). 
Approaches that neglect environmental heterogeneity 
as a driver of population structure may thus be overly 
simplistic and result in an incomplete picture of the pro-
cesses that structure natural populations (e.g. [13, 14]).

To this end, the field of landscape genetics [15–17] pro-
vides the tools and data to not only analyse genetic infor-
mation in a spatially explicit context, but to also consider 
local environmental conditions and those of the habitat 
matrix between populations in explaining non-random 
gene flow across the landscape [9]. Thus, it has become 
possible to study the full range of evolutionary ecologi-
cal processes driving population divergence and to tease 
apart their relative importance.

Integrating environmental dissimilarities into the anal-
ysis of population structure is particularly promising in 
species capable of dispersing widely. Typically, these spe-
cies do not show genetic patterns consistent with IBD or 
IBR, and exhibit divergence levels close to panmixia [18, 
19], which we define as random mating [20] and, conse-
quently, the absence of genetic subdivision. Such a spe-
cies, which is deemed quasi-panmictic at the subspecies 
level, is the buff-tailed bumble bee (Bombus terrestris). 
This highly polymorphic pollinator occurs across vari-
ous environmental gradients [21, 22], and morphological 

differences have prompted a division in nine subspecies 
[23]. Throughout the European continent [21, 24] and 
Tasmania [22], the species exhibits a remarkable niche 
breadth and is present across a wide range of habitats 
that differ strikingly in precipitation patterns, altitude 
and vegetation. Yet, studies on mainland populations 
have inferred little to no genetic divergence at various 
spatial scales, irrespective of the genetic marker applied. 
Using polymorphic microsatellites, no significant struc-
ture was observed at either fine [25] or broad scales [26]. 
A comparable picture emerged for broad-scale studies 
using mitochondrial (mt) DNA [27, 28], and single nucle-
otide polymorphisms [27]. These results are unlikely 
to be artefacts of the molecular markers used, as popu-
lations separated by strong oceanic barriers between 
islands or continents exhibited significant divergence in 
microsatellites [26, 28, 29], mtDNA [29] and phenotypic 
traits [30, 31]. Quasi-panmixia in this species may be the 
result of its high vagility. For instance, after its introduc-
tion to Tasmania, it only took seven years for the species 
to spread across the entire island [32] and buff-tailed 
bumble bee queens from introduced populations in Chile 
have been shown to disperse up to 200 km per year from 
their hibernation site [33]. Although gene flow in this 
haplodiploid species, where workers are not reproducing 
and males are haploid, is largely a function of queen dis-
persal [34], males have also been reported to disperse up 
to 10 km [35]. Only large water bodies and strong winds 
have so far been implied to limit gene flow [28]. Interest-
ingly, however, the potential for subtle population struc-
ture and how it might be influenced by environmental 
heterogeneity remain unelucidated.

This might pose a problem in the face of climate 
change, where species might show pronounced distri-
bution shifts (e.g. [24, 36]). Currently, the future distri-
bution of species is predicted using known associations 
between today’s species presence and environmental 
variables. Undoubtedly, this approach holds value as it 
might allow the delineation of areas that protect both 
current and future suitable habitats (e.g. [37, 38]). Yet, 
these models are uninformative about landscape-induced 
changes in genetic composition that might accompany 
distribution shifts. Hence, species persistence is only 
modelled correctly if the influence of the environment 
on the genetic composition of populations is known. This 
maxim might also apply to widespread and quasi-pan-
mictic species such as the buff-tailed bumble bee, where 
climate change-induced range losses might isolate popu-
lations genetically that are currently well connected [24].

Here we aimed to quantify population structure and its 
drivers in the buff-tailed bumble bee across two coun-
tries that exhibit pronounced landscape heterogeneity 
that is readily exploited by this species [21, 24]. Indeed, as 
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pronounced environmental heterogeneity might increase 
the likelihood of individuals to experience post-dispersal 
environmental conditions they are maladapted to, we 
hypothesised that this species shows genetic structur-
ing consistent with a scenario of IBE [14, 39]. Further, 
as the buff-tailed bumble bee is highly vagile [22, 35], 
we expected geographic distance and landscape resist-
ance to play only minor roles in explaining population 
divergence.

We used both spatially implicit and explicit analyses to 
identify the most likely drivers of population structure. 
Deploying 12 highly polymorphic microsatellite loci, we 
did not detect population differentiation using spatially 
implicit Bayesian clustering. However, Fst analyses dem-
onstrated subtle yet marginally significant genetic diver-
gence among populations, a finding that was partially 
corroborated using discriminant analysis of principal 
components (DAPC, [40]). We further used generalized 
dissimilarity modelling (GDM, [41]) to simultaneously 
assess how geographic distance, landscape resistance, 
and environmental dissimilarities among populations 
shape genetic divergence. Most notably, only environ-
mental dissimilarities proved to be informative in detect-
ing and unravelling the drivers of genetic structure in this 
widespread and abundant pollinator.

Results
Genotyping and exclusions
A total of 376 out of 385 buff-tailed bumble bees were 
successfully genotyped at 12 microsatellite loci (Addi-
tional file  1: Table  S1), with locus-specific error rates 
ranging between 0 and 5.56%. Using GenAlEx [42, 43] 
and Colony [44], we detected clones and full siblings 
that might interfere with obtaining accurate estimates 
of genetic population structure. In total, we excluded 
8 clones, 19 full siblings, and 2 individuals inferred as 
being clones and full siblings at the same time. To pre-
pare the data set for subsequent tests for central popu-
lation-genetic assumptions, we identified putative males 
based on multilocus heterozygosity scores. In the end, 
we excluded 36 putative males of which 34 were homozy-
gous across all 12 loci and 2 across 10 or 11 loci.

Descriptive statistics
Using Micro-Checker [45], we detected null alleles at all 
except for two loci (ms66 and ms86; Additional file  1: 
Table  S1) with numbers ranging from one to ten. Sig-
nals of stuttering were present at five loci (ms39, 80, 81, 
85, and 41) in one to eight sampling sites (Additional 
file 1: Table S1). We did not detect signals of large allele 
dropout. Deviations from Hardy–Weinberg equilibrium 
(HWE) were observed using Genepop on the Web [46], 
with 8 out of 12 loci showing significant departure from 

HWE in one to five populations. We inferred overall sig-
nificant (P = 0.027) linkage disequilibrium (LD) for the 
locus pair ms39–ms80, which was, however, not sup-
ported by population pairwise analyses, where significant 
LD was detected only in the populations Drӑgusani and 
Valea Hotarului. As null alleles, stuttering, and devia-
tions from both HWE and LD were not consistent across 
either loci or populations, we retained all loci in the data 
set.

Observed heterozygosity  (HO) ranged from 0.46 to 0.60 
in a data set containing diploid females only (diploid data 
set; ‘dpds’) (Additional file 1: Table S2). After correcting 
for unequal sample sizes by rarefaction for seven indi-
viduals, the number of alleles ranged from 2.70 to 3.09 
for ‘dpds’ and from 2.26 to 3.08 for a data set compris-
ing haploid males and diploid females (mixed-ploidy data 
set; ‘mpds’) (Additional file  1: Table  S2). Overall popu-
lation divergence measured as Fst was low in both data 
sets; 0.006 (P = 0.02) and 0.041 (upper 95% CI: 0.047) for 
‘dpds’ and ‘mpds’, respectively. Fst values among pairs of 
sampling sites ranged from 0 to 0.07 (‘dpds’, Additional 
file 1: Table S3) and from 0.01 to 0.12 (‘mpds’, Additional 
file 1: Table S4). Following false discovery rate (FDR, [47]) 
correction, five pairwise comparisons remained margin-
ally significant (P = 0.053–0.059) in ‘dpds’ with Fst values 
between 0.046 and 0.065. None of the ‘mpds’ Fst values 
surpassed its corresponding upper 95% confidence inter-
val. Pairwise and global Fst estimates in ‘dpds’ calculated 
with polysat [48] were higher (global = 0.039, pairwise: 
0.01–0.11; Additional file 1: Table S5) than corresponding 
estimates computed in GenAlEx. However, neither global 
nor pairwise estimates exceeded their corresponding 
95% confidence intervals, indicating still non-significant 
population differentiation. This observed discrepancy 
between Fst estimates calculated with GenAlEx and poly-
sat seems to be an artefact of the different computational 
approaches. polysat calculates Wright’s Fst [49], based on 
allele frequencies derived with the ‘simpleFreq’ function 
that might underestimate common and overestimate rare 
allele frequencies (polysat manual, [48]). GenAlEx, how-
ever, estimates Fst using an approach that among others 
corrects for finite sample sizes and the number of popu-
lations sampled [50].

Genetic clustering
To complement Fst analyses in inferring population 
divergence, we used the Bayesian clustering algorithm 
implemented in the program Structure [1]. Structure 
reconstructs patterns of genetic differentiation by assign-
ing individuals to a specified number of clusters (K). 
Visual interpretation of the results computed using the 
‘Correlated Allele Frequency model’ [51] with popula-
tion IDs as priors suggested the absence of clear genetic 
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structure (K = 1), irrespective of whether or not admix-
ture was assumed. This pattern was consistently inferred 
across all independent runs for each K, ranging from 2 to 
25 (Additional file 2: Figs. S1, S2). Excluding populations 
with fewer than 10 individuals (‘pop10’) for the ‘Admix-
ture’ runs did not change this conclusion, regardless of 
whether individuals were initialised from their respective 
populations or not (results available on Dryad).

Because the performance of Bayesian clustering 
depends on how well the genetic data conform to explicit 
population genetic models [40] and to further assess the 
potential for weak genetic structure, we performed dis-
criminant analysis of principal components (DAPC). In a 
run with populations as a priori groups, results obtained 
using DAPC were in line with the ones obtained using 
Structure. Following a-score optimisation to avoid over-
fitting, we retained 27 principal components (PCs) 
(Additional file 2: Fig. S3), resulting in a mean a-score of 
0.04. Clusters produced overlapped significantly (Addi-
tional file  2: Fig. S4), suggesting the absence of clear 
genetic structuring when populations were used as prior. 
However, this picture changed slightly when clusters 
were inferred de novo; from 700 independent cluster 

runs performed, 648 converged successfully and deemed 
K = 7 as the most meaningful number of clusters (Addi-
tional file 2: Fig. S5). Following a-score optimisation, nine 
PCs were retained (Additional file 2: Figure S3), resulting 
in a mean a-score of 0.71. Generally, even though clusters 
still showed noticeable overlap (Fig.  1), structuring was 
more pronounced than in the analysis that had used pop-
ulations as priors. Individuals within clusters originated 
from many populations throughout Romania and Bul-
garia (Additional file  1: Table  S6), suggesting admixture 
on a large spatial scale. Still, as DAPC with populations 
as prior recreate Fst-derived patterns of genetic struc-
ture [52], we concluded that clusters inferred de novo 
detected slight but unique genetic subdivision that had 
not been inferred by Fst analyses.

Despite the potential occurrence of two subspecies (B. 
t. dalmatinus and B. t. terrestris) native to Romania and 
Bulgaria [53], it seems unlikely that B. t. terrestris was 
present among our samples, as its known range is limited 
to the western border regions. Additionally, we would 
expect its presence to result in pronounced clustering, 
something we did not observe here. In summary, while 
Bayesian clustering suggested that the buff-tailed bumble 

Fig. 1 Scatter plot of the discriminant analysis of principal components using clusters identified de novo. Nine principal components (PCs) 
were retained to avoid overfitting, resulting in a mean a-score of 0.71. Ellipses indicate the 95% interval of assignment. Insets depict the principal 
component analysis (PCA) and discriminant analysis (DA) eigenvalues. Highlighted bars in insets show the number of PCs retained and the 
discriminant functions visualised, respectively
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bee resembles a quasi-panmictic population across 
Romania and Bulgaria, DAPC using clusters identified de 
novo suggested weak but still noticeable genetic subdivi-
sion undetected by Fst analyses.

Landscape genetic analyses
We estimated the relative effects of potential drivers 
of structure using generalized dissimilarity modelling 
(GDM). Local habitat conditions were characterised 
using a set of topographical, climate and vegetation vari-
ables, and resistance distances were based on a species 
distribution model (SDM) generated previously [21]. 
GDMs explained ~ 33.5 and 39.2% of the divergence 
observed for ‘dpds’ and ‘mpds’, respectively (Table 1). We 
compared these values to those of 1000 random models. 
Although the random models performed surprisingly 
well and explained ~ 24.3 (lower CI–upper CI: 23.8–24.8) 
and 31.8% (31.2–32.3) of the divergence for ‘dpds’ and 
‘mpds’, respectively, they were outperformed by the full 
models. Environmental dissimilarities contributed most 
to explaining differences in genetic composition. In con-
trast, geographic distance and the SDM-derived resist-
ance distances performed poorly; they were not retained 
in the full models and only explained 0.07 and 0.00% 
of the total variation for ‘dpds’, and 0.00 and 0.01% for 
‘mpds’ when analysed in isolation.

The environmental variables retained included tem-
perature, precipitation, topography, measures of sur-
face moisture, and vegetation density. Response curves 
(splines) visualise how the retained environmental vari-
ables contributed to the observed genetic differences 
and which variables were most informative in explain-
ing the spatial pattern of divergence (Additional file  2: 
Figs. S6, S7). The splines produced for predictors deemed 

significant were highly variable, ranging from nearly no 
allelic turnover across the respective environmental gra-
dient to rapid turnover at particular gradient positions 
(Fig.  2; Additional file  2: Figs. S6, S7). The most impor-
tant variables in both ‘dpds’ and ‘mpds’ were slope, mean 
Leaf Area Index (LAI) and mean temperature of the cold-
est quarter (Bio 11). Even among the most informative 
variables, pronounced differences in the splines’ shapes 
were apparent (Fig.  2); following an initial plateau, Bio 
11 and Slope produced splines that indicated strong 
positive allelic turnover starting at a temperature of 9 °C 
and a slope of 2°, respectively. These responses differed 
markedly from the one shown by LAI where initially 
pronounced allelic turnover levelled off at a mean LAI 
of 13. Seasonality in surface moisture, isothermality, and 
mean temperature of the wettest quarter contributed as 
well, but their importance varied between the two data 
sets. Congruent to the negligible percentage of genetic 
differentiation explained, allelic turnover caused by geo-
graphic distance was quasi non-apparent. The map of the 
predicted allelic turnover across Romania and Bulgaria 
(Fig. 3(b)) shows that it is most pronounced along eleva-
tion gradients, such as between the Danube Delta and the 
Carpathians in Romania and the Balkan Mountains in 
Bulgaria.

Discussion
Incorporating environmental data in population genetic 
studies might help to explain subtle population struc-
ture in vagile species, whose dispersal is usually not con-
strained by geographic distance or the habitat through 
which dispersal takes place. To assess the informativeness 
of environmental data, we quantified population struc-
ture in the widespread and abundant buff-tailed bumble 
bee (Bombus terrestris). This species is usually considered 
to show subtle to no structure at mainland continental 
scales. Using genetic data only, we inferred weak struc-
ture across Romania and Bulgaria, two countries that har-
bour pronounced landscape heterogeneity. Harnessing 
a landscape genetics approach, we related genetic diver-
gence to this heterogeneity in the environment. Geo-
graphic distance was not informative, nor were resistance 
distances derived from a species distribution model that 
quantifies resistance to dispersal. Population structure in 
buff-tailed bumble bees thus follows a pattern of isolation 
by environment, where differences in habitat conditions 
reduce the fitness of dispersing individuals [9]. Thus, 
environmental selection against dispersers contributes 
to a disruption of genetic connectivity that gives rise to 
divergence in neutral markers through genetic drift.

The subtle level of divergence observed among Roma-
nian and Bulgarian populations is in agreement with 
a previous study demonstrating weak but significant 

Table 1 Percentage of variance explained by the generalized 
dissimilarity models for the data sets encompassing diploid 
(‘dpds’), and both haploid and diploid (‘mpds’) individuals

Models were run with five different input data sets. (1) Full: geographic distance, 
resistance distance and environmental variables were included; (2) Env only, (3) 
Geo only, (4) Res only: contained environmental variables, geographic distance, 
and resistance distance only, respectively. (5) Random: mean of 1000 models 
with randomly generated environmental variables. Lower/Upper CI: lower/upper 
95% confidence interval of the random models

dpds mpds

Full 33.48 39.18

Env only 33.48 39.18

Geo only 0.07 0.00

Res only 0.00 0.01

Random 24.30 31.78

Lower CI 23.77 31.24

Upper CI 24.82 32.32
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genetic structure among buff-tailed bumble bee popula-
tions in continental Europe [28]. Interestingly, some of 
the genetic divergence observed in the aforementioned 
study might simply be attributed to the inclusion of three 
subspecies [53]. Nonetheless, contrasting with previous 
work [25–27], these studies highlight the possibility of 
weak but significant genetic structure in this species.

More generally, low population structure has not only 
been detected in B. terrestris, but seems fairly common 
among Bombus species, including but not limited to B. 
lapidarius [55], B. hortorum, B. ruderarius, B. soroeen-
sis [56] and B. ignitus [57]. Quasi-panmixia in these spe-
cies is likely driven by extensive gene flow [22, 26, 35], 
strong enough to override most of the divergence caused 
by genetic drift and divergent natural selection. This 
hypothesis is in line with the absence of detectable lev-
els of isolation by distance in our study as well as main-
land populations of many other Bombus species, such as 
B. pascuorum [58], B. vosnesenskii [59], B. lapidarius, B. 
hortorum, B. ruderatus [60] and B. flavifrons [61]. Dis-
persal, and hence gene flow, may not follow a straight 
line, but rather a path of least resistance through suitable 

habitat. Resistance distances are thus often considered to 
be a better proxy of between-population dispersal than 
geographic distance. Nevertheless, our analyses suggest 
that gene flow is not constrained by variation in habi-
tat permeability either, a finding potentially caused by 
the absence of strong oceanic barriers in the study area 
[62–64].

Subtle genetic structure might also result from the buff-
tailed bumble bee’s generalist foraging behaviour and 
the presence of many workers [65–67]. The latter might 
increase the probability of detecting forage, while the 
former might increase the likelihood of it being deemed 
exploitable. Hence, both traits may allow this species to 
efficiently exploit natural and semi-natural habitats that 
might be devoid of related but more specialised species 
[68, 69]. Freed from interspecific competition, estab-
lishment success of colonies might be increased [70]. 
The species’ broad niche might thus translate to a more 
continuous distribution of nests across the landscape, 
with ample opportunity for gene flow among popula-
tions. However, with increasing nest densities, the ben-
efit of a more continuous distribution might increasingly 

Fig. 2 Allelic turnover across each of the environmental gradients depicted, as derived from a generalized dissimilarity model performed using 
environmental variables, geographic and resistance distance as predictors. Alongside geographic distance, which can be considered the baseline 
model of genetic structure, the splines of the three most influential variables in shaping turnover are shown; LAI: Leaf Area Index, Bio 11: mean 
temperature of the coldest quarter
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be cancelled out by strong density-induced intraspecific 
competition for forage [71, 72]. This competition may 
reduce overall nest performance and thus reproduc-
tive output [73, 74]. Hence, compared to related spe-
cies, the lower nest densities observed in B. terrestris 
[60, 75, 76] might even benefit gene flow, as a relaxation 

of competition might allow more nests to contribute to 
genetic connectivity, resulting in overall weak population 
structure.

The subtle divergence we observed was best explained 
by environmental dissimilarities, in particular in the 
mean temperature of the coldest quarter, Leaf Area 

Fig. 3 Study region and spatial generalized dissimilarity modelling prediction. a Location of the study area in South-Eastern Europe. Made with 
Natural Earth [54]. b Spatial patterns of the predicted genetic turnover across Romania and Bulgaria. Larger colour differences in red–green–blue 
colour space (see colour cube) represent higher genetic turnover. Stars mark sampling locations
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Index (LAI) and slope. The importance of temperature 
did not come as a surprise, as it is a predictor of the 
distribution of Bombus species [21, 77], and known to 
govern the emergence time of queens from hiberna-
tion [78]. Hence, queens hibernating in warmer areas 
might emerge earlier than those in colder areas. In 
fact, asynchronous emergence times may translate to 
phenological mismatches and thus reproductive iso-
lation between early and late colonies. Even though 
laboratory experiments with B. perplexus and B. luco-
rum did not support this hypothesis [79, 80], the com-
plex environment these species experience throughout 
their life cycles is unlikely to be fully reproduced in the 
laboratory [81]. Indeed, emergence patterns of sexuals 
in natural populations of several species, including B. 
flavifrons and B. lucorum/terrestris, differed strongly 
[82, 83], highlighting the potential for asynchronous 
emergence to give rise to reproductive isolation. As 
buff-tailed bumble bee gynes usually only mate once 
[84, 85], the asynchronous emergence of sexuals allows 
early emerging males to effectively monopolise queens, 
thus promoting population divergence.

Even though differences in local temperatures might 
thus facilitate genetic divergence, the influence of this 
environmental variable on the species’ life cycle is more 
nuanced. Facultative endothermy [86] and the ability for 
collective thermoregulation [87] allow nests to survive 
even under low temperatures [88], enabling great phe-
nological flexibility [89]. Populations may even change 
from univoltinism to bivoltinism in regions hitherto con-
sidered incompatible with the latter [74]. Notably, this 
change in phenology seems to spread northwards into 
colder regions [74], a pattern coinciding with northward 
range shifts in this species [90]. As doubling the num-
ber of reproductive cycles per year effectively doubles 
the number of potential admixture events, bivoltinism 
might contribute to genetic homogeneity. Nevertheless, 
generally cold winters in Romania and Bulgaria [91, 92], 
and the absence of sufficient forage during the cold sea-
son might limit bivoltinism to a few inland and coastal 
regions in both countries [92].

Another important variable retained in the final mod-
els was mean LAI. The mechanism through which this 
measure of greenness is associated with genetic struc-
ture remains unclear. Yet, mean LAI was highly corre-
lated with percent tree cover (r = 0.83, Additional file 1: 
Table S7), and although forests do not seem to limit bum-
ble bee movement [93, 94], buff-tailed bumble bee queens 
prefer open habitat for nesting [95]. Forests may thus 
reduce genetic connectivity by constraining the amount 
of available nesting habitat [62, 96]. Moreover, assum-
ing a negative effect of woodland on the range expansion 
of this species allowed to accurately model its invasion 

pattern in Japan [97], suggesting that queen-borne range 
expansion might indeed be limited by forests.

The last variable retained in our analyses was the slope 
of the terrain. Slope has previously been suggested to be 
an important determinant of suitable hibernation habitat 
[78, 98]. However, hibernation locations might only be of 
secondary importance to gene flow. Instead, the presence 
of suitable nesting habitat where populations are estab-
lished is more likely to influence gene flow and hence 
genetic divergence among populations. To this end, 
slope might only shape genetic turnover if hibernation 
locations coincide with the locations where colonies are 
established (i.e. when queen dispersal after hibernation is 
strongly limited [99]). Given that buff-tailed bumble bee 
queens are instead highly vagile [22, 100], the mechanism 
of how slope governs genetic divergence remains unclear.

Although we included a large set of environmental 
variables, about 60% of the genetic variation remained 
unexplained. As we aimed to unravel the factors shaping 
and maintaining large-scale genetic structure, divergence 
explained by small-scale processes, temporal fluctua-
tions or colony-intrinsic traits were beyond the scope 
of this work. Genetic divergence might also result from 
demographic processes, such as bottlenecks [57], which 
we could not cover here. Future studies might investigate 
the influence of the abundance and the spatial arrange-
ment of plant species producing nectar or pollen in high 
quantities [81, 101, 102]. Finally, habitat alterations such 
as intensified farming practices might also structure 
populations, in particular through a synergy with natural 
stressors [103, 104].

Conclusions
Seemingly panmictic populations might exhibit subtle 
genetic structure that can only be understood when con-
sidering the environment as a potential driver of diver-
gence. We inferred subtle differentiation in a widespread 
and abundant quasi-panmictic pollinator that was not 
explained by geographic distance or variation in habitat 
permeability. Yet, using a suite of environmental vari-
ables, we showed that environmental dissimilarities are 
informative in explaining the observed spatial patterns of 
genetic structure in a highly vagile species.

Methods
Study species and study area
The buff-tailed bumble bee (Bombus terrestris) is a wide-
spread and abundant pollinator species. Its native dis-
tribution covers much of the Palearctic realm, including 
Europe, North Africa, and the British and most Medi-
terranean and Atlantic islands [26, 29]. Its polylectic 
foraging and high pollination efficiency in various crops 
[23, 105] has rendered this species a prime candidate 
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for pollination in the greenhouse industry where it is 
deployed in high numbers [106]. Upon introduction out-
side its native range, this species has spread rapidly and 
established itself in many countries including Chile, Japan 
and New Zealand [22, 105, 107–109], which highlights its 
potential to rapidly adapt to novel environments.

We conducted this study in Romania and Bulgaria, 
neighbouring countries in South-Eastern Europe that 
exhibit high heterogeneity in topography, climate, and 
land use. On a large scale, extensive mountainous areas 
with peaks up to 2500 m shape the face of both countries. 
In Romania, the Carpathian Mountains predominate 
[110], whereas in Bulgaria the landscape is structured 
by alternating bands of high and low terrain that stretch 
from east to west across the country [111]. The topog-
raphy gives rise to various climatic zones ranging from 
alpine and subarctic to humid subtropical [110, 112]. The 
landscape is a mosaic of natural areas such as plains, open 
woodland, and extensive forests, as well as inhabited and 
in- and extensively used agricultural areas. This pro-
nounced environmental heterogeneity provides an ideal 
study ground to identify subtle population structure and 
its drivers in a species believed to be quasi-panmictic.

Field sampling
Over five consecutive years, from 2013 to 2017, we 
obtained 385 individuals from 25 locations across Roma-
nia and Bulgaria (Fig.  3(a)). Sampling sites (Additional 
file 1: Table S8) were at least 20 km apart to avoid over-
lapping foraging ranges [93, 113, 114]. Locations spanned 
a wide range of habitat conditions, encompassing both 
natural and semi-natural habitats, as well as extensive 
environmental gradients with respect to climate, vegeta-
tion and altitude. Sites were visited only once by a small 
team of 2–3 people for approximately 1.5 h each. Individ-
uals regardless of sex were caught using insect nets and 
sacrificed in a jar with ethyl acetate [115]. Subsequently, 
specimens were transferred to individual tubes contain-
ing 96% ethanol and stored at −20 °C after returning to 
Tübingen University.

Marker choice, DNA extraction, and genotyping
Even though single nucleotide polymorphisms are 
increasingly being used to address a plethora of evo-
lutionary and ecological questions [116], microsatel-
lites remain a powerful yet time and cost-efficient way 
of detecting population structure [117]. Indeed, the 
markers’ high mutation rates might render it particu-
larly suited to infer the influence of recent ecological 
events on shaping spatial patterns of genetic diversity 
[118–120]. Additionally, genetic connectivity might be 
disrupted through reduced fitness of dispersers [9, 121]. 
Even though increasing genetic divergence is then caused 

by genetic drift, it is environmental differences that drive 
this differentiation in the first place. To this end, corre-
lations between environmental variables and genetic 
divergence in neutral genetic markers, known as pat-
terns of IBE/IBA, can be used to uncover hidden selec-
tive variation. Hence, microsatellites can be used to study 
the influence of the environment on shaping population 
structure in a widespread species such as B. terrestris. We 
acknowledge that this marker with its high allelic diver-
sity within populations might depress Fst estimates [122]. 
Size homoplasy, where alleles are identical in state but 
not by descent might decrease Fst estimates even more 
but especially when dispersal among populations is low 
[123], which is unlikely to be the case in the highly vag-
ile buff-tailed bumble bee. However, and regardless of the 
strength of the latter, both limitations render Fst values a 
conservative estimate of the true genetic divergence.

From each individual, we extracted DNA from one 
or two legs using the DNeasy Blood and Tissue Kit and 
QIAamp DNA Micro Kit (Qiagen, Hilden, Germany). We 
followed the manufacturer’s protocols except for adding 
20 µl of 1 M dithiothreitol solution to each sample, which 
facilitates the extraction of DNA from chitinous materi-
als [124]. Individuals of B. terrestris, specifically workers 
[125], can be difficult to distinguish morphologically in 
the field from another closely related bumble bee species, 
the white-tailed bumble bee (Bombus lucorum) [126]. We 
therefore confirmed species identity using a 1043 bp long 
fragment of the cytochrome c oxidase subunit I (CO1) 
gene [21].

We then amplified 12 previously developed [127] 
microsatellite loci in 3 multiplex reactions (PM1–PM3, 
Additional file  1: Table  S1). PCR amplification was run 
in a total volume of 10 µl consisting of 5 µl PCR master 
mix (Qiagen), 2.1  µl HPLC  H2O, 0.4  µl bovine serum 
albumin (10  mg/ml), 1  µl primer solution (100  µM, 
Applied Biosystems) and 1.5  µl sample DNA. Samples 
were initially denatured at 95 °C for 15 min, followed by 
25 cycles of denaturation (94  °C, 30 s), annealing (PM1: 
56 °C, PM2/3: 60 °C, both for 90 s) and extension (72 °C, 
60 s). An additional 20 cycles were run using the follow-
ing settings: denaturation (94 °C, 30 s), annealing (44 °C, 
90  s) and extension (72  °C, 60  s). PCR products were 
visualised on an ABI3730XL capillary DNA sequencer 
(Applied Biosystems) using a GeneScan 500 LIZ size 
standard (Applied Biosystems) at Macrogen Europe (The 
Netherlands). Results were analysed using GeneMarker 
v.2.4.0 (SoftGenetics, State College, PA). Samples that 
had not amplified successfully or for which scoring had 
not yielded conclusive results were re-amplified and re-
scored. Individuals that repeatedly failed to amplify or 
yielded inconclusive results for the second time were 
excluded. The presence of genotyping errors was assessed 
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by re-amplifying and re-scoring 36 randomly selected 
samples, representing approximately 9.5% of all individu-
als. Scoring results were compared between the first and 
second run and the mean error rate for each locus was 
calculated in Microsoft Excel.

Data analysis
Identification and removal of clones, sibling workers 
and drones
As the presence of clones and full siblings is known to 
distort estimates of population structure, we first iden-
tified clones using the ‘Multilocus Matches’ analysis 
in GenAlEx v.6.503 [42, 43]. Second, full siblings and 
additional clones were detected using the maximum 
likelihood approach implemented in Colony v.2.0.6.5 
[44], which has been deemed the most reliable method 
for assigning sibship in bumble bees [34]. In brief, we 
assumed a polygamous mating system to allow Colony 
to infer the relationship among all individuals entered 
as offspring, as well as inbreeding [128], the presence of 
clones, and dioecious reproduction with haplodiploidy. 
Two runs, differing in their seed values, were conducted 
with medium length using the full likelihood method 
with medium precision. Dropout rate was set to 0.001 
and locus-specific mean error rates ranged from 0 to 
5.56%. Individuals were considered clones or full siblings 
when they were inferred in both runs with probabilities 
>0.8 and originated from the same population. For each 
inferred clone or full sibling pair, one randomly selected 
individual was retained, resulting in the so-called ‘com-
plete data set’ (‘cpds’, Additional file 1: Table S8). As sub-
tle genetic distances might not be inferred accurately for 
small populations [129], we excluded the populations 
‘Billed’ and ‘Coastra’, resulting in a ‘mixed-ploidy data 
set’ (‘mpds’, Additional file  1: Table  S8). Additionally, 
because haplodiploidy in Bombus (i.e. haploid males, 
diploid females) deflates measures of heterozygosity, we 
identified and excluded putative males in ‘mpds’ based on 
observed multilocus genotypes. More specifically, indi-
viduals were considered males if they were heterozygous 
for a maximum of two loci, resulting in a data set encom-
passing diploid individuals only (‘dpds’, Additional file 1: 
Table S8) from 21 populations throughout Romania and 
Bulgaria.

Population genetic analyses
After excluding putative clones, full siblings and hap-
loid males, we tested for null alleles, stuttering and large 
allele dropout in Micro-Checker v.2.2.3 [45], applying 
3000 randomisations and a Bonferroni correction while 
omitting missing data. Null alleles are those that do not 
reliably amplify in PCR, usually due to non-ideal condi-
tions and/or mutations at primer-binding regions and 

result in heterozygotes appearing as homozygotes while 
homozygotes typically do not show alleles at the respec-
tive loci at all [130]. Furthermore, if the alleles in a het-
erozygote differ strongly in size, the shorter allele may 
be preferentially amplified during PCR, at the expense of 
the larger one. Hence, the signal of the larger allele might 
be too weak to be confidently detected during genotyp-
ing, resulting in the individual to be erroneously called as 
homozygous [131]. Hardy–Weinberg equilibrium (HWE) 
and genotypic linkage disequilibrium (LD) were assessed 
through Genepop on the Web v.4.2 using the Markov 
chain method with 10,000 dememorisations, 1000 
batches and 10,000 iterations per batch. Subsequently, we 
used GenAlEx v.6.503 (‘dpds’) and SPAGeDi v.1.5 [132] 
(‘mpds’) to compute genetic diversity indices, including 
observed and unbiased expected heterozygosity. Rare-
fied allelic richness [133] was obtained in hp-rare v.1.1 
[134] (‘dpds’) and SPAGeDi (‘mpds’). We then computed 
population pairwise and global genetic distances (Fst) 
and corresponding P values for ‘dpds’ using GenAlEx 
with 9999 permutations. Negative Fst values were con-
verted to zero and P values were adjusted for multiple 
testing through false discovery rate (FDR) correction [47] 
using the ‘p.adjust’ function in R v.3.6.0 [135]. For ‘mpds’ 
both the Fst matrix and global Fst value were computed 
with the ‘calcPopDiff’ function based on allele frequen-
cies calculated with the ‘simpleFreq’ function in the pol-
ysat v.1.7.4 R package [48]. Additionally, for both global 
and pairwise values, we computed the 95% confidence 
intervals of 10,000 bootstrap replicates. Fst values were 
considered significant if they surpassed the upper 95% 
confidence interval. To explore whether potential differ-
ences in Fst estimates between ‘dpds’ and ‘mpds’ are sim-
ply an artefact of the different computational approaches 
used, we also calculated pairwise and global Fst estimates 
for ‘dpds’ in polysat. Significance testing was performed 
as described above.

Following the computation of estimates of Fst, we 
assessed genetic structure in ‘cpds’ through Bayesian 
clustering in Structure v.2.3.4 [1] using the ‘Admixture’ 
and ‘Correlated Allele Frequency’ models with population 
IDs as priors [51]. We set the number of clusters (K) from 
2 to 25 (number of populations sampled) and computed 5 
iterations with a burnin period of 100,000 and 1,000,000 
Markov chain Monte Carlo (MCMC) repetitions. Rela-
tive admixture between populations was estimated by 
Structure (INFERALPHA = 1). Because previous studies 
suggested that buff-tailed bumble bees are quasi-pan-
mictic, and they are highly vagile, we hypothesised that 
admixture is common, and the corresponding model in 
Structure was biologically most meaningful. Yet, we also 
explored the performance of Structure’s ‘No admixture’ 
model by running two iterations with the aforementioned 
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burnin period and MCMC repetitions. Additionally, as 
uneven sampling sizes among populations might result 
in an incorrect number of clusters [136], two further 
Structure analyses were run after excluding populations 
with fewer than 10 individuals (‘pop10’, Additional file 1: 
Table  S8). After setting the maximum K to 23, the first 
run was computed with the settings specified above while 
for the second run we additionally set STAR TAT POP-
INFO to 1 to initialise each individual at its own popu-
lation [137]. Structure output was visualised with the 
pophelper v.2.3.1 R package [138].

As complex patterns of population subdivision might 
not be detected reliably using only one clustering 
approach, we complemented Structure runs with dis-
criminant analysis of principal components (DAPC, 40) 
implemented in the adegenet v.2.1.5 package [139] in R 
v.4.1.1. In fact, by maximising between-group variability, 
DAPC might be well-suited to detect suble and complex 
patterns of population subdivision, such as hierarchical 
clustering or clines [40]. We performed two DAPC runs. 
Briefly, the first one was computed using populations 
as a priori groups. For the second analysis, we inferred 
clusters de novo using the ‘find.clusters’ function with 
1,000,000 iterations and 700 random starting points, 
and selected the number of clusters that minimised the 
BIC value. To avoid overfitting, we determined the opti-
mal number of PCs to retain in both analyses using the 
‘optim.a.score’ function with 1000 simulations, respec-
tively. The results were visualised in scatter plots.

Mechanisms of divergence
As the likelihood of successful dispersal between popu-
lations decreases with geographic distance, gene flow 
starts to become limited and populations diverge through 
genetic drift. Under this scenario, a positive relationship 
between geographic and genetic distance is anticipated, a 
pattern termed isolation by distance (IBD, 7). Moreover, 
heterogeneous conditions of the habitat through which 
dispersal takes place impose varying levels of resistance 
to dispersing individuals. They may therefore not follow 
a straight line, but instead the path of least resistance. 
Least-cost path [140] and isolation by resistance (IBR, 
8) analyses aim to quantify this heterogeneity in habi-
tat permeability and its effect on population structure. 
Both IBD and IBR describe processes resulting in neutral 
population divergence, and are jointly coined isolation by 
dispersal limitation [141]. In addition, species experience 
heterogeneous environmental conditions that may exert 
strong selection pressures on populations, potentially 
leading to local adaptation and hence population diver-
gence [142, 143]. Interestingly, the prolonged reduced 
fitness of dispersers [9] that are maladapted to newly 
encountered conditions might result in the disruption of 

genetic connectivity. As a consequence, populations may 
differentiate by means of genetic drift in neutral markers, 
a pattern termed isolation by environment/ecology (IBE, 
[10, 11]) or, alternatively, isolation by adaptation (IBA, 
[12]).

We considered all three potential mechanisms of popu-
lation divergence in our analyses. In addition to straight-
line geographic distance, we also included a measure of 
habitat permeability using resistance distances based on 
a previously published species distribution model [21], as 
well as a set of environmental variables.

Environmental variables and permeability of the habitat 
matrix to dispersal
We characterised environmental conditions across 
Romania and Bulgaria using a set of 16 environmen-
tal variables compiled for previous species distribution 
and landscape genetic studies [21, 39] (Additional file 1: 
Table S9). This set included variables related to climate, 
vegetation and topography at 30 arcseconds resolu-
tion, which roughly converts to a 1 km resolution at the 
equator. Briefly, we initially considered 19 climate vari-
ables from WorldClim v.2 [144], including temperature 
and precipitation variables based on a 30-year climatol-
ogy from 1970 to 2000 [145]. Elevation data originated 
from the Shuttle Radar Topography Mission (SRTM, 
[146]), and were also used to compute aspect and slope. 
We included spatial and temporal vegetation patterns 
derived from satellite data: percent tree cover and Leaf 
Area Index (the one-sided green leaf area per unit ground 
area), both obtained from the Global Land Cover Facil-
ity database [147]. Information on vertical forest struc-
ture, i.e. canopy height, was derived from space borne 
LiDAR from 2011 [148]. Finally, to incorporate informa-
tion about surface moisture, we included annual mean, 
minimum, maximum, and seasonality, computed from 
raw QuikSCAT data [39]. To do so, we used daily raw 
backscatter measurements downloaded from the BYU 
Scatterometer Climate Record Pathfinder database [149] 
over the period the instrument was online (2000–2008). 
This initial data set was reduced by excluding highly cor-
related variables. We did so using their variance inflation 
factor (VIF) and excluded those with a score ≥ 10 in a 
stepwise fashion in the usdm R package v.1.1–18 [150] in 
R v.3.6.1. To facilitate the discussion of our findings, we 
also quantified environmental similarities among popu-
lation locations by means of Pearson correlation coef-
ficients (Additional file 1: Table S7), calculated using the 
‘cor’ function in R v.3.6.2. More information on the envi-
ronmental data and processing can be found elsewhere 
[21, 39].

To obtain a measure of habitat permeability, we further 
calculated population pairwise resistance distances based 



Page 12 of 16Glück et al. BMC Ecology and Evolution            (2022) 22:8 

on the species distribution model (SDM) of B. terrestris 
[21]. Computations were carried out in Circuitscape 
v.4.0.5 [151] with the SDM surface being treated as a 
conductance map, a cell size of 0.0083333° (i.e. 30 arcsec-
onds) and a cell connection scheme of eight neighbours. 
Although species distribution models are not directly 
informative about genetic connectivity (i.e. functional 
connectivity, [152]), they represent the spatial configura-
tion of putatively suitable habitat (i.e. structural connec-
tivity, [153]). One caveat of this approach is that habitat 
unsuitable for breeding or foraging may nevertheless be 
easily crossed by vagile species. Yet, it may be reasonable 
to suspect that more suitable habitat can be crossed more 
easily than less suitable habitat, and thus that SDMs pro-
vide a useful estimate of relative habitat permeability. We 
therefore considered it meaningful to use SDM-derived 
population pairwise resistance distances (Additional 
file 1: Table S10) as additional predictors in our analyses.

Landscape genetic analyses
We established associations between genetic data and 
environmental variables using generalized dissimilarity 
modelling implemented in the gdm R package v.1.3.11 
[154]. This extension of the classical matrix regression 
allows to fit non-linear relationships between predic-
tors and response variables. Additionally, the contribu-
tion of predictors can be analysed simultaneously [41]. 
In a landscape genetics framework this means that the 
effects of geographic distance and the environment on 
genetic divergence can be analysed at the same time, and 
estimates of variable importance are provided through 
permutation [155–157]. Predictors inferred as informa-
tive in explaining genetic turnover yield I-splines that 
provide two pieces of information. The maximum height 
of the curve indicates the amount of biological change 
along the gradient, while the spline’s shape informs about 
the rate of genetic turnover [156]. In this study, we used 
this framework to infer the relationship between pairwise 
genetic distances (Fst, scaled between zero and one) and 
environmental variables, geographic distance and resist-
ance distance. In total, we computed five different mod-
els, that included (1) environmental variables, geographic 
and resistance distances (full model), (2) environmen-
tal variables only, (3) straight-line geographic distances 
only, (4) resistance distances only, and (5) 1000 models, 
each using 16 random environmental variables to evalu-
ate the performance of the full model. We considered the 
full model significant if its variation explained surpassed 
the 95% confidence interval of the random models. Sub-
sequently, following the approach by Fitzpatrick and 
Keller [156], we used the inferred relationships between 
predictor and response variables at sampling sites to pre-
dict genetic turnover across Romania and Bulgaria. First, 

for each retained environmental variable, we extracted 
its value across the study area at 30  arcseconds resolu-
tion. Using the ‘gdm.transform’ function from the gdm 
package, we then transformed environmental variables 
into ‘genetic’ importance values. We selected the three 
most influential and uncorrelated factors through prin-
cipal component analyses (PCA) using the ‘princomp’ 
function with calculations performed on the covariance 
matrix. We purposely centred, but not scale-transformed 
the PCA to preserve differences in the magnitude of the 
genetic importance among environmental variables. 
With the ‘rasterize’ function in QGIS v.3.16.2 [158] we 
converted the obtained point values to rasters, merged 
them with the ‘r.composite’ function to a composite and 
assigned the corresponding PC scores to a RGB palette. 
The result (Fig.  3(b)) visualises differences in genetic 
composition, where increasingly dissimilar colours repre-
sent higher predicted genetic turnover.
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