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Abstract 

Background: Autotetraploid Carassius auratus (4n = 200, RRRR) (abbreviated as 4nRR) is derived from whole genome 
duplication of Carassius auratus red var. (2n = 100, RR) (abbreviated as RCC). Ribosome DNA (rDNA) is often used to 
study molecular evolution of repeated sequences because it has high copy number and special conserved coding 
regions in genomes. In this study, we analysed the sequences (5S, ITS1-5.8S-ITS2 region), structure, methylation level 
(NTS and IGS), and expression level (5S and 18S) of 5S and 45S ribosomal RNA (rRNA) genes in 4nRR and RCC in order 
to elucidate the effects of autotetraploidization on rDNA in fish.

Results: Results showed that there was high sequence similarity of 5S, 5.8S and ITS1 region between 4nRR and RCC. 
This study also identified two different types of ITS2 region in 4nRR and predicted the secondary structure of ITS2. It 
turns out that both secondary structures are functional. Compared with RCC, there was no significant difference in 
NTS (5S rRNA) methylation level, but the expression level of 5S rRNA was lower in 4nRR, indicating that methylation 
had little effect on the expression level in 4nRR. IGS (45S rRNA) was hypermethylated in 4nRR compared to RCC, but 
the expression of 18S rRNA gene was no significantly different from that in RCC, indicating that methylation regula-
tion affected gene expression in 4nRR.

Conclusion: The above studies initially revealed the effects of autotetraploidization on the structure and function 
of 5S and 45S rRNA in Carassius auratus, and provided a theoretical support for the systematic study of the evolution 
pattern and characteristics of rDNA in vertebrates.
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Background
Polyploidy studies have reported about different aspects 
of life such as genome duplication, gene expression, and 
subsequent evolution [1, 2]. Polyploids can be classi-
fied into autopolyploids and allopolyploids. The former 

presents two or more homologous chromosomes in a 
homopolyploid which may contribute to the formation 
of polyvalent bodies during meiosis, whereas the latter 
predominantly forms bivalent pairings [3, 4]. It is worth 
noting that most polyploidy associated studies mainly 
focus on plants and less on animals. In our previous stud-
ies, we developed allotetraploid hybrids (4n = 148, RRBB) 
(abbreviated as 4nRB) from the first generation of Caras-
sius auratus red var. (2n = 100, RCC) (♀) × Megalobrama 
amblycephala (2n = 48, BSB) (♂) hybrids [5]. In subse-
quent studies, abnormal chromosomal behavior during 
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meiosis in allotetraploid hybrids (4nRB) led to the for-
mation of autotetraploid sperms and autodiploid eggs, 
which eventually formed autotetraploid Carassius aura-
tus (4nRR) [6, 7]. Previous researches mainly focused 
on allopolyploids, with only few autopolyploid studies. 
As the most prone to hybridization, the genomes of fish 
have been comprehensively studied, and thus they can be 
used to better understand the evolution of vertebrate cell 
genomes [8].

Ribosomal DNA (rDNA) is commonly used to study 
the molecular evolution of multigene families. In eukary-
otes, rDNA genes are mainly divided into two categories: 
5S rDNA and 45S rDNA repeats. rDNA encodes rRNA 
that represents a highly conserved gene product in all 
cells [9, 10]. Because of the predominance of its struc-
ture, rDNA often serves as a good resource for studying 
evolutionary events [4, 11]. In animals, 45S rDNA con-
tains 18S, 5.8S, 28S, and spacers (IGS, ITS1 and ITS2), 
while the 5S rDNA gene is a unit consisting of a gene 
transcription region (120  bp) and a non-transcribed 
spacer (NTS). Previous studies of fish have reported 
that different types of 5S rDNA were due to differences 
in NTS (NTS I, NTS II, and NTS III) [4, 10, 12]. IGS is 
a transcriptional regulatory sequence of rDNA which 
modulates cellular processes [13, 14]. Previous analyses 
of rDNA repeats have mostly been carried out in inverte-
brates and plants. Therefore, information on 5S and 45S 
rDNA in vertebrates is scarce. One study reported that 
rRNA molecules must fold into secondary structures in 
order to function properly in ribosomes [15]. ITS2 pro-
vides useful biological information at a higher taxonomic 
level, even in all eukaryotes, because it has a conserved 
secondary structure [16]. Many gene promoter regions 
are rich in CpG, commonly known as CpG islands. Stud-
ies have shown that cytosine methylation in CpG dinu-
cleotide guanosine 5’ plays an important role in gene 
expression regulation [17, 18]. In this study, we analyzed 
the sequence, structure, methylation, and expression in 
5S and 45S rRNA clusters between autotetraploid Caras-
sius auratus (4nRR) and its parental species (RCC). From 
an evolutionary perspective, comparing the arrangement 
of the 5S and 45S rRNA in 4nRR and RCC makes sense 
because of their similar genomic compositions. Our 

results initially revealed the effects of autotetraploidiza-
tion on 5S rRNA and 45S rRNA of Carassius auratus, 
and provided theoretical support for the systematic study 
of the evolution patterns and characteristics of rDNA in 
vertebrates.

Results
Expression sequence analysis of 5S rRNA coding region 
and ITS1‑5.8S‑ITS2 sequence
A total of 40 copies of the gene sequences were analyzed 
from 4nRR and RCC. Amplification of the 5S rRNA cod-
ing region in 4nRR and RCC produced a 120  bp band. 
BLASTn alignment of the sequences in 4nRR detected 
two types: one was identical to RCC (not shown in fig-
ure), and the other had high sequence identity (average 
similarity of 97.5%) with corresponding sequences from 
RCC, although there was a few base substitution changes 
(Fig. 1). Therefore, our preliminary analysis showed that 
the 5S rRNA coding region of 4nRR had high similarity 
with the corresponding parental species sequences (Gen-
Bank Accession Nos. MZ041022 and MZ041023).

It is well known that two specific sequences (called 
internal transcription spacers) separate the mature rRNA 
sequences: ITS1 (between 18S rRNA and 5.8S rRNA) 
and ITS2 (between 5.8S and 28S rRNA). We cloned and 
sequenced PCR products in order to compare the inter-
nal transcription region (ITS1-5.8S-ITS2) of 4nRR and 
RCC. For better comparison, the ITS region was divided 
into ITS1, 5.8S and ITS2 regions. BLASTn sequence 
alignments showed that the ITS1 and 5.8S rRNA of 4nRR 
had 100% similarity (Fig.  2) to RCC (ITS1: GenBank 
Accession Nos. MZ041015 and MZ041016; 5.8S: Gen-
Bank Accession Nos. MZ041020 and MZ041021). Nev-
ertheless, we found two different types of ITS2 in 4nRR: 
type I (inherited from the parental species (RCC)) and 
type II (a newly formed type which was only expressed 
in tetraploid species) (Fig.  3) (GenBank Accession Nos. 
MZ041017-MZ041019). Figure  3 showed intraspecific 
variation of these sequences. Results indicated that type 
II ITS2 had obvious insertion, deletion and base substi-
tution. These findings suggested that the ITS1 sequence 
was more conserved than ITS2.

Fig. 1 Expression sequences of 5S rRNA coding regions from RCC and 4nRR
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Prediction of ITS2 secondary structure
ITS2 usually has four helices, but not all eukary-
otes have the same number of helices. Studies have 
shown that only helix II and helix III are recogniz-
able and essentially common in all organisms [16]. In 

this study, we predicted the secondary structure of 
ITS2 according to the two different sequences of type 
I and type II (Fig.  4). It turned out that both second-
ary structures were functional. The results showed that 
helix II (pyrimidine-pyrimidine) and helix III had high 

Fig. 2 Expression sequences of ITS1 and 5.8S from RCC and 4nRR

Fig. 3 Expression sequences of ITS2 from RCC and 4nRR
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conservation in type I and type II of ITS2, especially the 
5’ side of helix III (CCG GTG G).

Expression analysis of 5S and 18S rRNA
We compared the expression of 5S and 18S rRNA genes 
in 4nRR using quantitative real-time PCR with RCC 
acting as the control group (Fig. 4). Results showed that 
the amount of 5S rRNA transcriptional products in the 
liver tissues of 4nRR was significantly lower than that 
of RCC group (Fig.  5A; P < 0.05). However, there was 
no significant difference in the expression of 18S rRNA 
gene between RCC and 4nRR (Fig. 5B; P > 0.05). These 
results suggested that the effects of polyploidy on the 
expression levels of 5S and 18S rRNA genes were not 
consistent.

Methylation‑specific PCR of NTS (5S rRNA) and IGS (45S 
rRNA)
The results only showed differences of methylation level 
in NTS II because the 5S arrays of NTS I and NTS III had 
the same levels of methylation in RCC and 4nRR (Fig. 6) 
(GenBank Accession Nos. MZ041027- MZ041032). How-
ever, there was no significant methylation difference of 
NTS II between RCC and 4nRR (85% and 92.5%, respec-
tively) (P > 0.05). Figure  7 showed analysis of the IGS 
methylation status of 45S rRNA in liver tissues (GenBank 
Accession Nos. MZ041024-MZ041026). Our results indi-
cated that there were two different types of IGS (4nRR I 

and 4nRR II) in 4nRR. Furthermore, 4nRR I had a similar 
methylation level with RCC (P > 0.05), while 4nRR II had 
a higher methylation level than RCC (P < 0.05). In gen-
eral, the IGS methylation status of 4nRR was hypermeth-
ylated and the degree of IGS methylation was negatively 
correlated with the relative expression of genes.

Discussion
5S and 45S rDNA genes play a critical role in ribosome 
folding and functionality [9]. Studies have shown that the 
ITS region is a useful genetic marker for the analysis of 
intraspecific variation [19–21]. Our results indicated that 
the coding region of 5S rRNA gene, 5.8S rRNA gene and 
ITS1 region sequences were almost conserved in 4nRR. 
A previous study reported that the 5S rRNA gene (tran-
scribed by RNA polymerase III) contained an internal 
control region (ICR) that acted as the promoter for the 
gene [22]. Generally, variation in 5S rDNA occurs in the 
NTS region, but the coding region remains unchanged 
[23, 24]. It has been reported that the ITS region (45S 
rDNA) participates in proper processing of ribosomal 
RNA sequences and forming mature functional rRNA 
subunits [25]. Thus, based on these results, autotetra-
ploidization has no significant effect on the organization 
of 5.8S rRNA and ITS1 region. The sequences and struc-
tures are consistent, so 5.8S rRNA and ITS1 perform the 
same function in RCC and 4nRR. With regard to the ITS2 
region, a comparison between RCC and 4nRR indicated 

Fig. 4 ITS2 RNA transcript secondary structures predictions in 4nRR. A is the secondary structure in RCC and type I. B is the secondary structure of 
type II expressed in 4nRR
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that there were two types of ITS2 region in 4nRR. These 
mutations can be attributed to the weak selection pres-
sure on any single copy of the gene, thereby allowing a 
degree of variation in the gene region [26, 27]. In addi-
tion, hybridization is accompanied by genome changes in 
order to overcome threats to its survival [28].

The ITS2 secondary structures presented in this study 
is consistent with other ITS2 structure predictions. ITS2 
usually has four helices, with helix II and helix III being 
recognizable in almost all organisms. Helix II is very 
short, does not have any branches, and has a pyrimidine–
pyrimidine mismatch. On the other hand, helix III is usu-
ally longer than helix II and often has branches. Previous 

studies reported that the largest absolute sequence con-
served region in the entire ITS2 was located on the 5’ 
side (YCG GTG GR) of helix III close to the tip [16, 29, 
30]. Moreover, these conservative characteristics are pre-
served in type I and type II helices. The ITS2 conserved 
structural motifs are necessary for all aspects of riboso-
mal processing [31]. The helix I is highly similar in both 
types. Traditionally, helix IV is the most variable region 
in ITS2, thus, it is normal for the two types of 4nRR to 
be different, both secondary structures are functional [8, 
32]. These differences may also reflect differences in the 
formation of mature functional ribosomes because there 
are many steps involved in the production of a mature 
rRNA gene [25].

Newly formed polyploids undergo extensive genomic 
changes after genome combination and replication [33]. 
Polyploidy significantly affects genome formation and 
other genetic aspects such as gene expression. We found 
that there were no significant differences in expression of 
the 18S rRNA gene between 4nRR and RCC. However, 
the 5S rRNA gene showed significant differences. Moreo-
ver, all the genes were doubled in autotetraploid fish com-
pared to RCC. Theoretically, if each gene was normally 
expressed, the total gene volume would be much higher 
than that of the diploid parent. This supports the find-
ings of a previous study which reported that the origin 
of polyploid lineages are not consistent at the ploidy level 
of gene expression, with regard to increase or decrease 
[34]. Previous studies have shown that the genomic DNA 
loci of autotetraploids differ from those of diploids [35]. 
However, these results did not explain whether the gene 
expression differences were caused by genomic DNA site 
changes or epigenetic silencing. For example, changes in 

Fig. 5 Relative expression of the 5S and 18S genes in the livers of RCC and 4nRR during the breeding season. A is the relative expression levels of 5S 
in the liver. B is the relative expression levels of 18S in the liver

Fig. 6 Sequencing results of methylation extent of NTS II of 5S rDNA, 
wherein yellow represents methylation and blue represents no 
methylation
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Fig. 7 Sequencing results of methylation extent of IGS of 45S rDNA, wherein yellow represents methylation and blue represents no methylation
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DNA methylation, a common epigenetic phenomenon, 
can also regulate gene expression.

To verify whether the differences between RCC and 
4nRR were dependent on the methylation status, we 
analyzed the NTS methylation patterns of the different 
5S rRNA arrays of RCC and 4nRR using the genomic 
sequencing technique. Previous studies have associated 
cytosine methylation with the non-expression of a gene 
[36, 37]. The 5S rRNA clusters of NTS I and NTS III in 
RCC and 4nRR were all methylated and they showed no 
difference in methylation status. Furthermore, although 
the methylation levels of NTS II varied, there was no 
significant difference. In summary, the methylation level 
in all 5S rRNA sequences was similar. These results 
indicated that methylation may not affect the binding 
of transcription factors to 5S rDNA, nor did it regulate 
transcription of the 5S rRNA gene. Thus, it may have no 
significant effect on expression of 5S rRNA gene. IGS, 
as a variable part of 45S rDNA, usually contains enough 
variation to allow examination of genetic relationships 
between closely related species [14, 38, 39]. In the study, 
there were two types of IGS in 4nRR: type I was hypo-
methylated, while type II was typehypomethylated. The 
results ensured that the methylation level was consistent 
in 4nRR. Among them, there was no significant difference 
between type I and RCC, while type II showed significant 
differences and a higher methylation degree than RCC. 
The results showed that IGS methylation was negatively 
correlated with relative gene expression, and methylation 
inhibited the expression level to some extent. The emer-
gence of two types of IGS can be attributed to the fact 
that the establishment of nucleolar dominance requires 
several generations of selection and screening during the 
homologous polyploidization process. It is possible that 
the inhibitory mechanism that controls nuclear domi-
nance in hybrids also control the number of active 45S 
rRNA gene in pure breeds and may reflect the dose com-
pensation mechanism [11, 40, 41]. However, regulation of 
the active 5S rRNA gene may be different. Our quantita-
tive real-time PCR results indicated that the expression of 
5S rRNA gene was low in all 4nRR individuals, while the 
expression level of 18S rRNA gene showed no significant 
difference between RCC and 4nRR. In our previous stud-
ies, we observed loss of chromosomal sites in the genera-
tion of 4nRR [35]. As regulatory regions, NTS and IGS 
regulate gene expression during the late stage according 
to methylation. This phenomenon might explain why the 
number of chromosomes in 4nRR increased but there 
was no positive increase in the expression level. In addi-
tion, 45S and 5S rRNA could not make many differences 
in number because they need to form the large and small 
subunits of the ribosome. Otherwise, the subunits would 
not be paired quantitatively.

rDNA is an important component of nuclear struc-
ture and mechanisms that maintain genomic integrity 
[42–44]. 5S rRNA and partitial ITS sequences are still 
conserved during the autotetraploidization, the study has 
revealed that the basic unity of rDNA sequences in 4nRR 
and RCC. One study reported that the high transcrip-
tional and recombination rates of rDNA contributed to 
the diversity of the genome and formation of reproduc-
tive barriers [8]. Moreover, the repetitive nature of rDNA 
and other duplicated genes leads to a high degree of evo-
lutionary dynamics [45, 46]. Therefore, this tetraploid lin-
eage can be an attractive model for elucidating genomic 
changes associated with autotetraploidization. Our 
results will expand the understanding of homologous 
polyploidy effects on ribosomal DNA and have impor-
tant significances for the evolutionary study of polyploid 
Carassius auratus. In addition, the information on the 
sequences and structures of 4nRR (5S and 45S rRNA) 
provides a reference for further studies on the evolution 
of rDNA in fish and other vertebrates.

Conclusion
By comparing and analyzing the sequences, structures, 
expression levels and methylation levels of ribosomal 
RNA genes (5S rRNA, 45S rRNA) in autotetraploid 
Carassius auratus (4nRR), we found that 5S rRNA, 5.8S 
rRNA and ITS1 were highly conserved, but autotetra-
ploidization promoted the structural differentiation of 
ITS2 in 4nRR. The expression levels and methylation 
results showed that the methylation of the 5S rRNA regu-
lation region did not regulate the expression of the gene, 
but the 45S rRNA regulation region affected the expres-
sion of 18S rRNA gene in 4nRR to some extent. Poly-
ploidization is one of the main driving forces of biological 
evolution. The datas from this study provide some refer-
ences for studying the evolution of ribosomal DNA in 
autopolyploid species.

Materials and methods
Materials
Experimental fishes were provided by the Engineering 
Center of Polyploid Fish Breeding of the National Educa-
tion Ministry, Hunan Normal University.

Expression sequence and expression analysis of 5S rDNA
Our analyses involved sequencing of 30 clones for each 
accession. Genomic DNA was isolated from blood of 
all samples using genomic DNA extraction kit (Takara). 
PCR was then performed with a specific primer com-
plementary to the 5S rRNA conserved coding region. 
The primers were synthesized according to the method 
described by Qin et al. [47]. Primer sequences were: GCT 
ATG CCC GAT CTC GTC TGA (5′-3′) and CAG GTT GGT 
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ATG GCC GTA AGC (5′-3′). The PCR program included 
30 cycles of denaturation at 94  °C for 1  min, annealing 
at 59  °C for 35 s, and elongation at 72  °C for 35 s. Final 
extension was performed at 72 °C for 15 min. Moreover, 
RNA was extracted from liver tissues using Trizol rea-
gent in accordance with the manufacturer’s instructions 
(Invitrogen, San Diego, CA). Next, the RNA was reverse 
transcribed to cDNA using the PrimeScript™ RT reagent 
kit (Perfect Real Time, Takara) with a gDNA eraser. The 
5S rRNA gene-specific primer (5′-CAG GTT GGT ATG 
GCC GTA AG-3′) was then used to amplify the first-
strand cDNA.

Amplification products were analyzed using 1–1.2% 
agarose gel electrophoresis stained with ethidium bro-
mide. The PCR products were then cloned, followed by 
selection of clones with inserts of the predicted length 
(203  bp) for sequencing. Next, Bioedit and ClustalW 
software was used to analyze the sequence homology and 
variation of the amplified fragments of 4nRR and RCC. 
To determine gene expression differences, quantitative 
real-time PCR (Prism 7500 sequence detection system, 
ABI) was used to analyze the expression level of the tar-
get genes. Relative gene expression was normalized to the 
expression of β-actin gene, an endogenous control.

Expression sequence (ITS1‑5.8S‑ITS2) and expression (18S) 
analysis of 45S rDNA
For amplification of ITS1-5.8S-ITS2, the following prim-
ers were used: 5′-AGT CGT AAC AAG GTT TCC GTA 
GGT G-3′ and 3′-TTA TGG CCG TGC TCT GGC TAT-5′ 
[11]. PCR was carried out using the conditions described 
above but with exception of the annealing temperature 
(57  °C). Moreover, the 18S rRNA gene-specific primer 
(5′-CAT CTA AGG GCA TCA CAG AC-3′) was used to 
amplify the first-strand cDNA. Sequences and expres-
sion analysis were conducted according to a previously 
described protocol [48].

Secondary structure of ITS2 sequences
We conducted comparative sequence analysis to eluci-
date the secondary structure of ITS2 sequences. More 
information about species relatability and intraspeciality 
variation was obtained by examining the functional fold-
ing patterns or secondary structures of the rRNA regions 
of interest [8, 21]. We determined the structure with the 
lowest free energy and compared the secondary structure 
of ITS2 cloned by 4nRR.

Methylation‑specific PCR
Using the common carp genome as a reference, we 
identified the spacer regions (NTS and IGS) of 5S and 
45S rRNA genes in NCBI database. Sequences of the 

corresponding target NTS and IGS were retrieved from 
RCC genome (DDBJ/EMBL/GenBank Accession No. 
PRJNA289059) and 4nRR genome (unpublished), respec-
tively. Genomic DNA was extracted from liver tissues 
using Sangon Animal Genomic DNA extraction kit (n = 3 
fishes per treatment). Next, the extracted DNA was 
treated according to the methylcoded bisulfite conversion 
kit protocol (Thermo Fisher). Gene-specific primers for 
NTS (NTS I, NTS II, and NTS III) and IGS (Table 1) were 
designed using Primer 5.0 software. PCR products were 
ligated, transformed, and sequenced. Finally, sequences 
obtained from methylation results were retrieved using 
BiQ analyzer.
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scribed spacer; IGS: Internal transcribed spacer; rDNA: Ribosomal DNA; rRNA: 
Ribosomal RNA.
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