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Abstract 

Background: Plant communities of fragmented agricultural landscapes, are subject to patch isolation and scale‑
dependent effects. Variation in configuration, composition, and distance from one another affect biological processes 
of disturbance, productivity, and the movement ecology of species. However, connectivity and spatial structuring 
among these diverse communities are rarely considered together in the investigation of biological processes. Spatially 
optimised predictor variables that are based on informed measures of connectivity among communities, offer a solu‑
tion to untangling multiple processes that drive biodiversity.

Results: To address the gap between theory and practice, a novel spatial optimisation method that incorporates 
hypotheses of community connectivity, was used to estimate the scale of effect of biotic and abiotic factors that dis‑
tinguish plant communities. We tested: (1) whether different hypotheses of connectivity among sites was important 
to measuring diversity and environmental variation among plant communities; and (2) whether spatially optimised 
variables of species relative abundance and the abiotic environment among communities were consistent with 
diversity parameters in distinguishing four habitat types; namely Crop, Edge, Oak, and Wasteland. The global estimates 
of spatial autocorrelation, which did not consider environmental variation among sites, indicated significant positive 
autocorrelation under four hypotheses of landscape connectivity. The spatially optimised approach indicated signifi‑
cant positive and negative autocorrelation of species relative abundance at fine and broad scales, which depended 
on the measure of connectivity and environmental variation among sites.

Conclusions: These findings showed that variation in community diversity parameters does not necessarily cor‑
respond to underlying spatial structuring of species relative abundance. The technique used to generate spatially‑
optimised predictors is extendible to incorporate multiple variables of interest along with a priori hypotheses of 
landscape connectivity. Spatially‑optimised variables with appropriate definitions of connectivity might be better 
than diversity parameters in explaining functional differences among communities.
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Background
Landscape connectivity either facilitates or impedes the 
movement of species among resources of an ecosystem 
[1]. In agricultural ecosystems the spatial arrangement 
and connectivity of wild and anthropic plant commu-
nities (i.e., their configuration) influences biodiversity 
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as well as their functional diversity [2, 3]. Functional 
diversity describes differences among species and the 
functional roles they perform in ecosystems. However, 
landscape-scale studies typically characterise composi-
tional differences among communities in terms of species 
richness and abundance to demonstrate structure-func-
tion relationships, which may not correspond to bio-
logical processes [4–6]. Compositional variation of traits 
among communities, rather than species diversity per se, 
is expected to influence biological processes [7]. Instead 
of species diversity, spatially optimised predictors based 
on species compositional variation, have the potential to 
reveal biological processes even in the absence of infor-
mation on traits.

As environmental variation may influence biological 
processes at multiple scales, it is difficult to couple pro-
cesses with patterns of biodiversity [8–10]. As in all land-
scapes, agricultural ecosystems include habitat types that 
are connected physically and historically. For instance, 
climate and/or historical factors, and species invasions 
are associated with the distribution of species over large 
and small spatial scales, while local scale patterns tend to 
be driven by species interactions [11–14]. Spatial auto-
correlation of species relative abundances is widely used 
for adjusting analyses to meet assumptions of depend-
ence among communities [15]. However, spatial auto-
correlation among experimental sites poses two main 
challenges to using community diversity as a predictor 
of biological processes [16, 17]. First, connectivity among 
study sites has to be specified, and second, the predictor 
variables selected for describing community character-
istics have to capture the scale of effect of the processes 
being measured. Species interactions such as competi-
tion, parasitism, and  mutualism, may be contingent on 
climate [18], the topology of a study area [19], the move-
ment ecology of species among suitable patches [20], or 
landscape disturbance [21]. To untangle the effects of 
multiple processes on biodiversity, spatial structuring of 
species relative abundances and variation of the abiotic 
environment among both isolated and well-connected 
plant communities need to be considered.

The term ‘connectivity’ has been used in the field of 
landscape ecology to describe the movement of an organ-
ism through a landscape as a function of distance and 
landscape structure [1, 22, 23]. Connectivity is an impor-
tant concept in community ecology because it affects 
dispersal among local communities and species inter-
actions within them [24–26], and sustains ecosystem 
function [27, 28]. For example, ecological networks have 
shown that a majority of studies that use weighted dis-
tance measures between agents of interest (e.g., species, 
communities) may not make sense when interpreting 
biological processes such as the probability of dispersal, 

interaction frequency, contact rate, or carbon flow [29]. 
Studies that exploit differences in space as experimental 
conditions, select study sites (or plots) that are generally 
not contiguous, with intervening patches and variation in 
the amount of habitat surrounding each site. For exam-
ple, there was a significant positive effect between the 
proportion of crop land compared to unmanaged land, 
and both plant virus prevalence and aphid vector com-
munity richness [30]. In another study, soil management 
practices were found to correspond to variation in preda-
tor community abundance, ground-dwelling arthropods, 
and aphid predation [31]. Traditional approaches often 
assume that the matrix surrounding patches of interest 
is uniform [32]. However, variation in the type of inter-
patch matrix and the connectivity among study sites are 
expected to contribute significantly to patch isolation and 
affect local assembly and the stability of communities.

One solution to correcting for spatial biases is to opti-
mise predictor variables by removing the variation within 
covariates as explained by connectedness. Spatially opti-
mised predictor variables (i.e., with the scale of effect 
identified) may be more strongly related to the effect of 
the process being investigated, compared to the observed 
measurements from which the optimised variables are 
derived (e.g., species relative abundance). For example, 
one multi-scale approach is to select a number of scales 
of effect for each predictor based on known biological 
gradients [33]. However, high species density variance 
over space in landscapes comprising both wild and man-
aged communities, makes the identification of scales 
of effect based on correlations between ecological fac-
tors at increasing distances from focal sites, impractical 
in most instances [8]. In highly mosaicked landscapes, 
spatial optimisation techniques that do not rely on a 
priori information about biological gradients may be a 
better approach. For example, to separate the effects of 
environmental filtering from diversity patterns, a partial 
Mantel test was used to show that environmental effects 
occurred largely independent of spatial effects on diver-
sity among forest plots [34]. However, to validate the 
use of spatial optimisation approaches, hypotheses for 
the connectivity among the relative locations of species 
assemblages have to be determined a priori [35]. One way 
of achieving this is to compare hypotheses of connectiv-
ity that describe different densities of linear connections 
between study sites.

The aim of this study is to use a scale-optimisation 
approach in concert with hypotheses of connectivity [36] 
to investigate the variation among communities of mul-
tiple study sites of each of four habitat types. We expect 
diversity (i.e., abundance, richness, and evenness) esti-
mators of sites of each habitat to be quantitatively simi-
lar. However, as the study sites are largely not spatially 
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contiguous, and with some that adjoin each other, spa-
tial structuring will depend on connectivity among study 
sites and environmental variability across the study area. 
To attain this aim, we detect scales of effect from empiri-
cal observations of plant species relative abundance and 
abiotic environmental variation. Four hypotheses of 
connectivity among the sites were described a priori to 
test the hypotheses that: (1) the scale of effect of differ-
ences in species diversity among the habitats depends on 
how connectivity among study sites is described; and (2) 
the diversity estimators used to characterise functional 
properties of communities are subject to spatial struc-
turing and abiotic environmental variation. The result-
ing spatially optimised variables of the species relative 
abundances and the environmental factors may then be 
deployed in subsequent studies to test hypotheses of bio-
logical processes.

Methods
Study area and sampling
We performed this study between July 2015 and June 
2017 in the Vega del Tajo-Tajuña agricultural region of 
the Tagus River Basin, in the South-Central Plateau of the 

Iberian Peninsula (Fig.  1). We conducted 78 individual 
collections that included 23 sampling sites, which com-
prised 329 plant species distributed over communities of 
four habitats with distinct cover types. The four habitat 
categories were nominated a priori to represent domi-
nant land-cover types in the ecosystem and were distin-
guished by expert knowledge of community composition 
gained over twenty years of research in the region [24, 
37–40]. We chose plant communities at sites present in 
forest (Oak), successional scrubland (Wasteland), and 
at the borders (Edge) between crops (Crop) to repre-
sent habitat categories (For details see: Additional file 1: 
Appendix S1).

Four sites each of Oak (n = 4 sites × 4 re-samples each) 
and Wasteland (n = 4 sites  × 4 re-samples each) were 
visited with collections made in autumn and spring over 
two growing seasons. Edge (n = 2 sites × 6 re-samples + 2 
sites × 5 re-samples) and Crop (n = 7 sites × 2 re-sam-
ples + 3 sites × 3 re-samples + 1 site × 1 re-sample) with 
four and eleven sites respectively, were visited in spring, 
summer, and autumn. Eleven sites were chosen to better 
characterise the variation expected from the Crop com-
munities as cultivated fields are subject to crop rotation 
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Fig. 1 Extent of study area in central Spain. Sites indicated with open circles. The digital terrain map has a scale indicating elevation in metres (top 
left). Site code labels are Crop (Cr), Edge (Ed), Oak (Oa), and Wasteland (Wl); Crop codes are Brassica (B), Hordeum (H), Cucumis (C), and Zea (Z)
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and fallow periods. Oak sites supported expansive assem-
blies and required a relatively large sample size to account 
for patch heterogeneity and rare (low frequency) species. 
Similarly, Wasteland sites were also subject to patch het-
erogeneity but in a smaller area than Oak (See Additional 
file 1: Appendix S1 for rationale of sampling effort). Crop 
collections comprised 4 fields of Cucumis melo (melon), 
2 of Zea mays (maize), 2 of Brassica oleracea (cabbage 
and cauliflower), and 3 of Hordeum vulgare (barley), i.e., 
the major summer or winter crops in the area. In Oak 
and Wasteland sites, 25 ×  25  m quadrats were marked 
out and 150 samples per site systematically collected at 
each resampling. In Edge and Crop, 50 samples from a 25 
× 2 m area at each site were collected at each resampling. 
A boustrophedonic transect method (a line taken alter-
nately from right to left and from left to right, and so on) 
was used in all instances except for Edge that have highly 
linear configurations. Depending on the habit of the spe-
cies, a number of leaves from different parts of the indi-
vidual were collected, each collection of leaves from the 
individual representing a single sample. The samples were 
harvested at fixed points along the transect. Individuals 
of each plant species were preserved at each collection 
and specimens assigned a provisional species, genus, or 
family rank prior to consultation with an herbarium for 
taxonomic assignments. The identifications were under-
taken by Dr. Rosario Gavilán [41, 42]. The voucher speci-
mens are available on request with permission from the 
authors.

Habitat diversity
As incomplete sampling and unequal sample sizes were 
part of our sampling strategy, we assessed whether our 
estimates were near to those expected from complete 
collections using rarefaction of species richness. We used 
detrended correspondence analysis (DCA) conducted 
with the R (version 3.5.2) package [43] vegan [44] to 
visualise the homogeneity of relative species abundance 
estimates among our collections (n = 78) in each habitat 
category. Our experience has shown that the choice of 
diversity index can influence the interpretation of differ-
ences among communities [40]. To estimate the diversity 
of each collection and site, we compared two estimators. 
The Tsallis entropy estimate of diversity (Sq) is sensi-
tive to rare species that were expected from incomplete 
samples and that generally characterise Oak and Waste-
land habitat. We also used an extrapolation (i.e., predic-
tion) method that relies on sample completeness and 
not equal sizes [45] to generate an asymptotic estimator 
(DAE) of Shannon diversity as implemented in the R pack-
age iNEXT [45]. Our main hypotheses were concerned 
with the spatial structuring of species relative abundance 
and abiotic environmental variation among the sites. By 

aggregating species relative abundances across the collec-
tions by site (Additional file  1: Appendix S1), we essen-
tially removed the temporal signal from data. Though 
not the focus of this study, we estimated the means and 
standard deviations in seasonal diversity among the habi-
tats to infer the absence or presence of temporal factors.

Environmental variation across sites
As the physical locations of wild or managed sites of each 
habitat category were not grouped by geographic prox-
imity but were intermixed, abiotic environmental vari-
ation among sites was not expected to concur with the 
habitat categories. Generalised linear regression was 
used to select from 19 climate variables (https:// www. 
world clim. org/ biocl im [46], Additional file  1: Appendix 
S1), those that were significant in the prediction of the 
sites from 1000 randomly chosen background points 
(i.e., pseudo-absences) within the bounding box of the 
extent of the study. We used topographic variables that 
comprised raster layers of elevation, aspect, and slope 
(https:// www. europ eanda tapor tal. eu). Aspect and slope 
were calculated from the elevation layer. Land cover vari-
ation (spatial polygon; http:// centr odede scarg as. cnig. es) 
was included as an indicator of land-use practices, and 
soil variation [47] as an indicator of historical factors that 
may influence community structuring. We created a base 
raster layer of dimensions 720 by 900 cells with resolu-
tion of 0.0016° by 0.0016° (the resolution of the eleva-
tion layer with the highest resolution) and used this to 
project the same raster definition to all other layers. The 
extracted environmental variables were used to construct 
a site-by-environmental variable matrix used in the sub-
sequent spatial optimisation steps. The highest resolution 
possible for the WorldClim data was at a spatial resolu-
tion of approximately 1  km2 (0.0083°  by 0.0083°). We 
calculated pair-wise geographic distances among all the 
sites and used kernel density estimation to compare the 
1  km2 grain size with the distribution of distances among 
the sites (Additional file 1: Appendix S2).

Spatial optimisation of variables
To demonstrate the difference between variation in 
diversity and the underlying spatial dependencies 
among communities, we evaluated spatial autocor-
relation among the sites with and without accounting 
explicitly for the scale of effect. The first spatial auto-
correlation approach estimates a global measure of 
Moran’s I [48] from geographic coordinates and spe-
cies relative abundances, along with one of each of four 
hypotheses of connectivity used to weight distance rela-
tionships between the sites. A Chi-squared transforma-
tion of the site-by-species matrix was performed to 
give weight to rare species. The observed Moran’s I [49] 

https://www.worldclim.org/bioclim
https://www.worldclim.org/bioclim
https://www.europeandataportal.eu
http://centrodedescargas.cnig.es
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was tested against a distribution of values generated by 
permutation of localities using a Monte Carlo proce-
dure. We conducted a second approach using Moran’s 
eigenvector maps (MEMs) to capture spatial structures 
at specific scales among the study sites [35]. Unlike 
the first approach used to estimate a global measure of 
autocorrelation, a connectivity graph is combined with 
an ordination technique to generate spatially optimised 
explanatory variables, such as for species relative abun-
dance and abiotic environmental variation (Additional 
file  1: Appendix S1). We chose the MEM eigenfunc-
tion approach for spatial optimisation and to estimate 
Moran’s I, because the method allows for a convenient 
approach to test hypotheses of connectivity using lin-
ear connections among sites. A popular approach used 
in biology to describe geographic connectivity among 
localities, assumes that various densities of linear con-
nections among points (i.e., study sites) on a planar sur-
face conform to a biological process [50]. The graphs do 
not explicitly consider information on the influence of 
landscape connectivity and species movement ecology 
among the study sites [19], but provide a comparison 
of more to less restricted connectivity. As the extent of 
the study included two river valleys, we considered that 
topographical variation would influence connectiv-
ity among the sites. We hypothesised that the hypoth-
esis of connectivity based on Delaunay triangulation 
represented relatively unrestricted connectivity (i.e., a 
greater density of edges in the graph) among the sites. 
The Gabriel graph and the relative neighbour graphs 
expressed relatively restricted connectivity as hypoth-
eses for the constrained movement of species (Addi-
tional file 1: Appendix S1).

The spatially optimised approach uses the Moran’s 
I statistic to evaluate spatial structures and generate 
MEMs, eigenfunctions that correspond to the n = 23 − 1 
study sites. Each series of MEMs relates to a different 
spatial scale. Regression is used to generate an R2 value to 
detect the maximum amount of variation in the predictor 
as explained by each MEM (i.e., at each scale). To test the 
significance of a given MEM, it is necessary to group sev-
eral of these spatial components within a given ‘smooth-
ing’ window (Additional file 1: Appendix S1). This avoids 
issues arising from estimation errors expected from too 
many spatial components [16]. From the 22 MEMs, we 
smoothed 2 groups of 11 MEMs to what we called the 
‘broad’ (MEMs 1–11) and the ‘fine’ (MEMs 12–22) spa-
tial scales respectively. This smoothing scheme had the 
lowest spatial scale resolution, where more scale cat-
egories may have been analysed, but was appropriate to 
demonstrate spatial dependencies on connectivity. Per-
mutation was used to test if the maximum observed R2 
in a group of smoothed MEMs was significantly greater 

than a randomised distribution. All spatial analyses were 
conducted in the package ade4 [51] and with R functions 
provided by [35] to perform the permutation tests.

Comparison of diversity and spatial predictors
Linear discriminant analysis (LDA) was chosen to com-
pare the variables in distinguishing the four habitat 
categories, as this method is suitable for a categorical 
dependent variable [52]. The approach requires more 
than one independent variable. In three sets of LDAs 
we used either the two diversity estimates  (Sq, DAE), or 
the three spatially optimised predictors  (MEMs). The 
explanatory power of each of the diversity estimates 
was expected to be redundant in respect to one another, 
and in distinguishing the four habitat categories, as they 
were highly correlated (r2 = 0.944), whereas each of the 
MEMs were not (r2 < 0.0001). We used MANOVA and a 
Wilks (λ) post hoc test to see how well the independent 
variables contributed to distinguishing the habitats. The 
scale of λ ranges from 0 to 1, where 0 indicates the best 
discriminatory power. For each set of independent vari-
ables, we used either uniform priors (equal probabilities) 
for the probability of each category, or default priors esti-
mated from the frequency of records in each category. 
In the third set of LDAs, the data were randomly divided 
in half to train and test the predictors in a final round of 
LDAs using the uniform prior. The assumptions of dis-
criminant analysis are multivariate normality, multicol-
linearity, and variable independence. All data used in the 
MANOVA and LDA were scaled and centred. Non-nor-
mal predictors were pre-processed using Box-Cox trans-
formations as implemented in the R package caret [53], 
to reduce non-normality of the errors and non-linearity 
in the model.

Results
Sample bias and habitat diversity
We were interested in how estimators of biodiversity 
based on species relative abundance can be used to dis-
tinguish habitats. The rarefaction analyses of the collec-
tions made on each sampling occasion at a particular 
site, indicated near asymptotic relationships between 
the number of samples and the expected number of 
species (Additional file  1: Appendix S3). A DCA (Addi-
tional file 1: Appendix S4) was used to assess the relative 
homogeneity of the collections among each of the habi-
tats, and supported our categorisation of each habitat. 
Crop did not form a homogenous habitat category and 
produced several distinct clusters that depended on the 
plant assemblies associated with the crop species and 
their Edge community (Additional file  1: Appendix S5). 
We used two estimators of diversity to account for rare or 
dominant species (evenness), and another for incomplete 
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sampling. Differences among the means of the Tsal-
lis entropy (Sq) and extrapolated (DAE) estimators of the 
diversity of each habitat were evident (Additional file 1: 
Appendix S6, Appendix S7). Differences in diversity 
among the habitats were sensitive to the choice of diver-
sity estimator when abundances were aggregated at the 
level of site (Additional file 1: Appendix S8). In general, 
Crop had the lowest diversity followed by Edge, Oak, and 
Wasteland with the highest diversity.

Spatial structuring among sites
Four hypotheses of connectivity (i.e., linear connec-
tions among study sites on a planar surface) were used 
to compare spatial structuring under a range of connec-
tivity scenarios (Table 1). The global estimates of spatial 
autocorrelation (i.e., with no spatial optimisation) indi-
cated significant (p < 0.05) and relatively weak (i.e., close 
to zero) positive spatial autocorrelation among sites 
regardless of the hypothesis used to describe connectiv-
ity (Additional file 1: Appendix S9). The spatial autocor-
relation approach that was sensitive to the scale of effect 
identified both fine- and broad-scale effects. The permu-
tation of the smoothed groups of MEMs (i.e., either at 
the fine- or broad- scale) indicated significant structuring 
(i.e., spatial patterns of distributions of species or envi-
ronmental variation) among the sites at the broad scale 
(MEMs 1–11). For instance, the MEMs generated under 
all connectivity graphs (e.g., Fig. 2; by the Gabriel graph, 
p = 0.031) indicated significant broad-scale structuring of 
species relative abundances. The Gabriel and Delaunay 
graphs also generated MEMs that indicated significant 

(p = 0.040 and p = 0.024, respectively) broad-scale struc-
turing given the environmental factors. When the signal 
from the environmental variation was filtered from the 
species abundance relationships, the Gabriel and Delau-
nay (Fig. 2, Additional file 1: Appendix S10) connectivity 
graphs generated significant structuring at fine spatial 
scales (MEMs 12–22).

Significant and positive spatial autocorrelation was 
detected at the broad-scale regardless of the hypothesis 
of connectivity (Table 2). For example, evidence of signif-
icant spatial structuring and positive spatial autocorrela-
tion at the broad scale corresponded to  MEM7 given the 
Gabriel graph (Moran’s I = 0.336, p = 0.023). However, 
significant fine-scale structuring and negative spatial 
autocorrelation was dependent on the connectivity graph 
(Additional file  1: Appendix S11, Appendix S12). Sig-
nificant negative spatial autocorrelation at the fine-scale 
was evident when the Gabriel and Delaunay graphs were 
used, which hypothetically described landscape connec-
tivity that conformed to the river valleys.

Spatially optimised versus diversity variables
We tested the hypothesis that species diversity differ-
ences among habitats (Additional file 1: Appendix S4) are 
subject to spatial dependencies. The diversity estimates 
(Sq and DAE at each site) were compared to the spatially 
optimised predictors (Gabriel SWM;  MEM3,  MEM7, 
 MEM21) in their ability to recover distinctions among 
the four habitats (Fig.  3). A Wilks post hoc test of the 
MANOVA (Table 3) was significant and rejected the null 
hypothesis of equality of habitat means [Wilks  λ = 0.011, 

Table 1 Permutation of the maximum observed R2

Significant tests are indicated with bold text

The spatial variables are for the first and second axes of a PCA of site-by-species (Y, 0.167 and 0.162 of total variance), an RDA of the environmental variables (F, 
0.202 and 0.198 of total variance), and a partial residual analysis (R, 0.239 and 0.195 of total variance). Significant tests indicated with bold text. The standardised 
observations are calculated by subtracting the mean of the randomised values and dividing by their standard deviation

Gabriel graph Delaunay triangulation Relative neighbour 1 Relative neighbour 2

Ordination Scale Obs. p-value Obs. p-value Obs. p-value Obs. p-value

Y Axis 1 Coarse 0.451 0.628 0.420 0.712 0.623 0.209 0.623 0.205

Fine 0.549 0.373 0.580 0.289 0.377 0.792 0.377 0.796

Y Axis 2 Coarse 0.749 0.040 0.780 0.024 0.810 0.013 0.810 0.020
Fine 0.251 0.961 0.220 0.977 0.190 0.988 0.190 0.981

 F Axis 1 Coarse 0.729 0.047 0.611 0.205 0.652 0.134 0.652 0.184

Fine 0.271 0.954 0.389 0.796 0.348 0.867 0.348 0.817

 F Axis 2 Coarse 0.661 0.125 0.736 0.042 0.585 0.282 0.585 0.292

Fine 0.339 0.876 0.264 0.959 0.415 0.719 0.415 0.709

R Axis 1 Coarse 0.136 0.999 0.262 0.956 0.406 0.745 0.406 0.747

Fine 0.864 0.002 0.738 0.045 0.594 0.256 0.594 0.254

R Axis 2 Coarse 0.556 0.351 0.310 0.881 0.572 0.295 0.572 0.329

Fine 0.444 0.650 0.690 0.120 0.428 0.706 0.428 0.672
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Fig. 2 Eigenvalue scores (Moran’s eigenvector maps, MEMs) given by the first and second axes produced by each ordination and connectivity 
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F(6, 36) = 52.34, p < 0.0001] when the diversity estimates 
were used to distinguish the four habitats. By compari-
son, the spatially-optimised variables produced non-sig-
nificant [Wilks  λ = 0.011, F(9, 41.52) = 1.74, p = 0.111] 
differences among the means. The LDAs grouped the 
diversity estimates of each site by habitat, but these dis-
tinctions were not clear when the spatially optimised 
predictors were used. The presence of underlying spatial 
structuring, and collinearity among the diversity esti-
mates for each site of each habitat, implies that high or 
low diversity does not represent a level that corresponds 
to specific biological processes. The spatial variables 
informed on underlying processes that connected the 
study sites, while species diversity only informed on dis-
tinctions among the four habitat categories.

Discussion
The explicit consideration of connectivity and spatial 
structuring among study sites is critical when predicting 
biological processes in heterogeneous landscapes [5]. The 
use of spatially explicit variables is not only crucial for 
correcting statistical analyses for spatial autocorrelation 
[15], but might provide a useful surrogate for biological 
processes that are difficult or impossible to measure [9]. 
The results showed both broad- and fine-scales of effect 
on the structuring of species relative abundances among 
the sites. Conversely, the species diversity indices did 
not inform on the influence of the abiotic environmental 
variation (the broad-scale) and the configuration of plant 
assemblages (the fine-scale). Importantly, these scales of 

effect were dependent on the hypothesis that weighted 
connectivity among the sites. These findings suggest that 
spatially optimised variables that incorporate a priori 
information on connectivity, inform on underlying pro-
cesses that connect communities [13, 30]. Information 
on unmeasured broad- and fine-scale processes that may 
influence plant assembly and local community struc-
ture, will therefore elucidate on the connection between 
demographic stochasticity among communities and the 
potential for dispersal among them.

Connectivity and spatial structuring among sites
We hypothesised that the scale of effect is dependent 
on the connectivity among communities, i.e., densities 
and conformations of linear connections among sites. 
Our findings showed that significant spatial structuring 
was concomitant with positive spatial autocorrelation 
(i.e., similar values cluster over the study area) of spe-
cies relative abundances at the broad scale for all four 
hypotheses of connectivity (Tables  1 and 2). However, 
significant negative spatial autocorrelation (i.e., large dis-
parities between the values of neighbouring sites) at fine 
scales (Table  2) was associated with the less restrictive 
expressions of connectivity (i.e., a relatively high density 
of connections among sites). Broad-scale spatial effects 
have conventionally been interpreted as resulting from 
environmental drivers, while structuring at fine scales 
and negative spatial autocorrelation has been interpreted 
as a consequence of proximity among sites with dis-
similar attributes [35]. Dispersal pathways and species 

Table 2 Permutation tests of the observed Moran I of MEMs with the maximum R2 of a given ordination (Y, R, F) axis (e.g., see Fig. 2). 
Significant tests are indicated with bold text

Significant tests are indicated with bold text

SWM Test Obs. Exp. Var. H0 p-value

Gabriel graph MEM3 0.670 − 0.044 0.170 Two‑sided 0.001
MEM7 0.336 − 0.044 0.165 Two‑sided 0.023
MEM21 − 0.840 − 0.040 0.173 Two‑sided 0.001

Delaunay triangulation MEM4 0.428 − 0.045 0.115 Two‑sided 0.001
MEM5 0.297 − 0.044 0.117 Two‑sided 0.005
MEM9 − 0.017 − 0.051 0.115 Two‑sided 0.784

MEM13 − 0.236 − 0.047 0.113 Two‑sided 0.090

MEM18 − 0.394 − 0.048 0.115 Two‑sided 0.007
Relative neighbour 1 MEM4 0.630 − 0.026 0.155 Two‑sided 0.001

MEM6 0.381 − 0.040 0.139 Two‑sided 0.004
MEM8 0.272 − 0.032 0.147 Two‑sided 0.036
MEM10 − 0.107 − 0.042 0.153 Two‑sided 0.679

Relative neighbour 2 MEM4 0.590 − 0.038 0.157 Two‑sided 0.001
MEM6 0.433 − 0.042 0.153 Two‑sided 0.001
MEM8 0.290 − 0.035 0.155 Two‑sided 0.032
MEM10 0.138 − 0.039 0.151 Two‑sided 0.242
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interactions, are predicted to respond differently to the 
influence of spatial autocorrelation [54]. Although we 
cannot objectively assess the performance of our hypoth-
eses for connectivity without data such as species move-
ment ecology, the findings demonstrate that it is critical 

to account accurately for connectivity among communi-
ties, in order to identify the scale of effect that is most 
meaningful to the processes being investigated.

The application of canonical approaches such as 
using a Gabriel graph to describe connectivity, has been 
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attractive to biologists as seen in its many applications 
[55]. However, it is questionable whether approaches that 
are based on linear lattice relationships, as we have used 
here, accurately represent descriptions of species move-
ments in heterogeneous landscapes. For example, an 
alternative approach weighted air passenger movement 
rates by infection prevalence to generate malaria risk 
maps among locations in a global air travel network [56]. 
Another approach corrected distances by accounting 
for the total overland distance between sites imposed by 
geographic topology [57]. Additionally, in our study we 
did not consider the role intervening communities may 
have had on connectivity bias among the sites. For exam-
ple, Thompson and colleagues [27] simulated habitat loss 
by removing local communities that served as connec-
tions among other communities. The study showed that 
the removal of communities disrupted dispersal among 
them and affected ecosystem diversity, function, and sta-
bility. It may be the case that hypotheses of connectivity 
are sensitive to variation in dispersal at different periods 
throughout the year. However, determining such cycles is 
beyond the scope of this study.

The importance of spatial structuring in modifying 
community dynamics cannot be understated. Connectiv-
ity and spatial structuring are expected to influence coev-
olutionary processes between plants and their associates, 
and adaptation to new niches, especially when prefer-
ences are not strongly constrained by species-specificity 
(e.g., [58–60]). Community composition is ultimately 
linked to the competing influences of environmental fil-
tering (i.e., the optimisation of living conditions) and 
mechanisms (e.g., competition, mutualism) permitting 
coexistence [61, 62]. The spatial arrangement and con-
nectivity of communities’ influences species movements 
among them and interactions within, and hence, their 
functional diversity.

Spatially optimised versus diversity variables
Our second hypothesis proposed that diversity estimators 
used to characterise functional relationships are subject 
to spatial structuring and abiotic environmental variation 
among the sites. Both diversity estimates were redun-
dant, but were consistently good at recovering significant 
clusters of sites of each habitat category regardless of 
the prior used for the analysis (Table 3; Fig. 3A, C). Even 
with the relatively few records of sites that were available 
for some of the habitats, the supervised LDA prediction 
using the diversity estimates also recovered each category 
(Fig. 3E). By contrast, the LDA plots generated from the 
spatially optimised variables showed no redundancy, with 
notable distinctions between the Crop and Wasteland 
sites only, and diffuse and overlapping clusters among 
them and the sites of Oak and Edge (Fig. 3B, D). The pre-
dictive LDA with the spatial predictors showed the same 
pattern (Fig.  3F) of non-significant variance relation-
ships among the habitat categories (Table 3). Wasteland 
sites were over-dispersed in the ordination space, with 
some sites more similar to Oak and some more to Edge 
sites. It would therefore be prudent to introduce either of 
the species diversity estimates, as a measure of distinc-
tions among communities, as well as spatial predictors 
that relate to processes that connect them, to test their 
respective contributions to model variance. Furthermore, 
our cursory analysis of temporal effects on species diver-
sity of communities (Additional file 1: Appendix S8) sug-
gests that seasonal variation may be associated with the 
density and the reproduction cycles [63] of plant species 
[58]. Altogether, the spatial scale-optimisation approach 
that we used here will be extendible to understanding the 
scale at which species traits [64] or resource use [65] con-
tribute most strongly to response variables or residuals in 
dynamic models.

Conclusions
Key challenges to modelling drivers of biodiversity 
include linking biological processes with functional 
features of species diversity [66]. Linking the spatial 
distributions of resources of multiple species with the 
particular spatial (or temporal) resolutions at which 
these associations are most meaningful [reviewed in 
67] is crucial to predictive modelling [68]. We show 
that explanatory factors hypothesised to drive bio-
logical processes can be assigned to spatially discrete 
scales. The spatial structuring among plant commu-
nities relied on the type of connectivity among com-
munities, which should ideally be quantified using 
information of species movement ecology. The findings 
show that the diversity estimators used to character-
ise plant communities, may not provide information 
about biological processes if the study does not connect 

Table 3 Multivariate analysis of variances (MANOVA) showing 
the variance relationships among the spatial and diversity 
variables used to predict the habitat categories

D.f. Sum Sq. Mean Sq. F-value P(> F)

Sq ~ Habitats 3 27.75 9.25 153.69 > 0.0001

Residuals 19 1.14 0.06

DAE ~ Habitats 3 26.38 8.79 76.64 > 0.0001

Residuals 19 2.18 0.11

MEM3 ~ Habitats 3 5.53 1.84 2.16 0.127

Residuals 19 16.23 0.85

MEM7 ~ Habitats 3 5.92 1.97 2.03 0.144

Residuals 19 18.47 0.97

MEM21 ~ Habitats 3 3.83 1.28 1.13 0.363

Residuals 19 21.53 1.13
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processes of interest with the scale(s) of effect. Spatially 
optimised predictors have the potential to relate multi-
ple unmeasurable variables to biological processes, and 
at the very least, provide a means of testing whether 
spatial factors contribute to statistical variance or 
error. Trait responses to spatial dependencies of many 
co-occurring species may now be compared in down-
stream analyses. Future attention to better characteris-
ing spatial dependencies among traits of communities 
will also improve models of biological processes.
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