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Abstract 

Background: Sharks and rays are some of the most threatened marine taxa due to the high levels of bycatch and 
significant demand for meat and fin-related products in many Asian communities. At least 25% of shark and ray spe-
cies are considered to be threatened with extinction. In particular, the density of reef sharks in the Pacific has declined 
to 3–10% of pre-human levels. Elasmobranchs are thought to be sparse in highly urbanised and turbid environments. 
Low visibility coupled with the highly elusive behaviour of sharks and rays pose a challenge to diversity estimation 
and biomonitoring efforts as sightings are limited to chance encounters or from carcasses ensnared in nets. Here we 
utilised an eDNA metabarcoding approach to enhance the precision of elasmobranch diversity estimates in urbanised 
marine environments.

Results: We applied eDNA metabarcoding on seawater samples to detect elasmobranch species in the hyper-
urbanised waters off Singapore. Two genes—vertebrate 12S and elasmobranch COI—were targeted and amplicons 
subjected to Illumina high-throughput sequencing. With a total of 84 water samples collected from nine localities, we 
found 47 shark and ray molecular operational taxonomic units, of which 16 had species-level identities. When data 
were compared against historical collections and contemporary sightings, eDNA detected 14 locally known species 
as well as two potential new records.

Conclusions: Local elasmobranch richness uncovered by eDNA is greater than the seven species sighted over the 
last two decades, thereby reducing phantom diversity. Our findings demonstrate that eDNA metabarcoding is effec-
tive in detecting shark and ray species despite the challenges posed by the physical environment, granting a more 
consistent approach to monitor these highly elusive and threatened species.

Keywords: 12S ribosomal RNA, Chondrichthyes, Cytochrome c oxidase subunit I, Dark diversity, Southeast Asia, 
Urban coastlines

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Sharks and rays are some of the most threatened 
marine taxa [1] due to their high demand as food fish 
[2], fin-related products in many Asian countries [3–5], 
Traditional Chinese Medicine [6], as well as high levels 
of bycatch [7]. Their slow growth (5–10  cm/year), late 
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maturity (5–15  years), low fecundity (litter size < 100 
per year), and high ecological risk [8, 9] exacerbate the 
threats posed by overfishing and further hinder popula-
tion recovery [10]. At least 25% of assessed shark and 
ray species are considered to be threatened with extinc-
tion based on the IUCN Red List of Threatened Spe-
cies [7]. Specifically, the present density of sharks has 
declined to 3–10% of pre-human levels within Pacific 
coral reefs [11], and they are functionally extinct in 
~ 20% of reefs surveyed globally [12]. These megafauna 
therefore constitute a considerable portion of dark 
diversity—species that have been historically reported 
and still exist in the greater surrounds of their known 
geographic ranges, but are presently missing from a 
specific area [13]. They could also represent phantom 
diversity—extant species that are locally colonised but 
have become too rare to be detected by regular survey 
methods [14]. Failure to detect these large predators 
has conservation and management implications [15], 
and in some cases, learned avoidance behaviour of elas-
mobranchs further amplifies the challenges of monitor-
ing these species [16].

The defaunation of sharks and rays have dire conse-
quences for coral reef health [17, 18]. It can alter bio-
logical communities [19], with impacts cascading down 
trophic levels [20]. Apart from the loss of ecosystem 
services conferred by these organisms, the disappear-
ance of these megafauna would impede our under-
standing of the drivers of species distribution and 
resilience, curtailing efforts for the formulation and 
implementation of management strategies [17].

Marine habitats are threatened by a wide range 
of anthropogenic-induced stressors such as climate 
change [21], overfishing [12], pollution [22], and habi-
tat degradation [23, 24]. Collectively, these impacts 
have led to population declines and extinctions [14, 25]. 
These consequently either increase an area’s dark diver-
sity due to extirpation of resident populations [13], or 
augment phantom diversity as these species may have 
left regular survey areas and are mistakenly regarded 
to be locally extinct [14]. From a conservation perspec-
tive, it is thus important to ascertain if non-detection 
is a result of the former or the latter because each has 
its own management implications. For instance, redis-
covery of rare, phantom species can spur expansion 
of survey areas or improved techniques for monitor-
ing success [14], while confirmed species losses might 
require further investigation into whether community- 
or ecosystem-level functions have been impacted and, 
if necessary, kickstart population recovery initiatives 
to allay further losses [13]. Clearly, the need to diver-
sify survey methods for biomonitoring has never been 
greater.

Species detection can be a tall order in the marine 
realm, because these environments are comparatively less 
accessible and thus less well-studied compared to ter-
restrial environments [26]. Conventional biomonitoring 
methods, such as underwater visual census (UVCs) and 
baited remote underwater video stations (BRUVS), while 
fundamental for providing data to support the manage-
ment of marine species, are time-consuming, labour- and 
cost-intensive [27]. These approaches may not always 
fare well for elusive fauna like low-density, highly-mobile 
sharks and rays [28]. Fortunately, recent advancements 
in DNA sequencing technologies [29, 30] have yielded 
new possibilities to work around present biomonitor-
ing challenges. One such application is high-throughput 
sequencing (HTS) of organisms’ trace genetic material 
isolated from environmental samples, otherwise known 
as environmental DNA (eDNA) [31, 32]. This approach 
allows for the detection of species in the water without 
having to visually observe them [33], and has emerged 
as an effective non-invasive method for biomonitoring 
based on different sample types (e.g. sediment; [34]) from 
various aquatic environments ranging from freshwater 
[31, 35] to marine habitats [36, 37]. In particular, eDNA 
has become increasingly popular for monitoring sharks 
and rays [28, 38–41].

This is a welcomed development for areas with highly 
sedimented ecosystems as eDNA can help bypass the 
constant need for visual observations [42, 43]. One exam-
ple is Singapore, where the highly urbanised and turbid 
waters have hindered in-water studies of marine fauna 
[43–45]. As such, in-situ shark and ray sightings are 
sparse and typically comprise chance encounters (Jaafar 
pers. obs.; [44]) or carcasses [45]. The poor water vis-
ibility (average Secchi depths of ~ 2 m; [46]) encumbers 
visual detection and limits the resolution of underwater 
surveys and video capture technologies [12, 28], thus 
increasing phantom diversity. Moreover, avoidance 
behaviour [16] in certain elasmobranchs further compli-
cates biomonitoring efforts. As such, it remains unclear 
as to whether elasmobranch diversity in Singapore can be 
accurately estimated from historical records. A previous 
broad-based eDNA metabarcoding study only managed 
to recover a single elasmobranch species, Carcharhinus 
melanopterus [47]. Yet, many other shark and ray species 
have been reported in checklists (e.g. [48] for fishes in the 
eastern Johor Strait), as well as from angler reports and 
citizen science surveys [49]. There is undoubtedly a strik-
ing gap in our understanding of elasmobranch diversity 
in urbanised environments that can be filled by a more 
targeted eDNA approach.

To detect the diversity of elasmobranch species present 
in Singapore’s waters, this study targeted two genes—
vertebrate 12S ribosomal RNA [50] and elasmobranch 



Page 3 of 14Ip et al. BMC Ecol Evo          (2021) 21:166  

cytochrome c oxidase subunit I [28, 38]—from 84 water 
eDNA samples collected from nine localities for HTS. 
We compared our resulting eDNA data with historical 
collections and contemporary sightings to investigate the 
extent to which eDNA metabarcoding could uncover the 
phantom diversity of sharks and rays. Our findings not 
only help enhance our understanding of elasmobranch 
diversity in Singapore, they also demonstrate the utility 
of eDNA for studying mobile marine fauna in other tur-
bid ecosystems. More broadly, this study and others will 
help inform biodiversity conservation and management 
practices by bringing eDNA methods closer to the rou-
tine biomonitoring of marine taxa and habitats [32, 51, 
52].

Results
Illumina sequencing and primer efficiency
Illumina sequencing collectively produced 515,657,226 
paired-end assembled reads, of which we obtained 
13,209,521 and 20,683,942 sequence reads (combined 
33,893,463) from the 12S and COI sequencing respec-
tively. Only 33.1% unique sequence reads (7,984,423 for 
12S and 3,234,072 for COI) were identifiable against 
GenBank records. A total of 210,761 (30,777 for 12S and 
179,984 for COI) unique sequence reads have closest 
matches (≥ 85%) to ‘Chondrichthyes’ (Fig. 1), making up 
1.88% of the total unique reads sequenced. Similar statis-
tics were obtained previously [28]. The rest of the unique 
sequence reads were mostly represented by ‘Actinop-
terygii’ and other ‘Metazoa’. Although 12S sequencing 
produced a higher proportion of Actinopterygii relative 
to unique Chondrichthyes reads, the vertebrate-specific 

primers yielded more Chondrichthyes species units than 
COI (Fig. 1).

We detected shark and ray species in all the water 
samples (n = 84) while none were found in the negative 
controls. The COI sequencing had generated more reads 
per sample and more consistent detection across PCR 
replicates than 12S sequencing (Additional file 1), espe-
cially for commonly detected species. Despite producing 
fewer total unique Chondrichthyes reads, the 12S prim-
ers detected more species than the COI primers, but at 
much shallower read depths across PCR replicates (Addi-
tional file  1). Detection of sharks with the 12S primers 
was observed to be less consistent among PCRs than the 
COI primer set.

MOTU richness, phantom diversity and new records
From all 84 water samples, eDNA recovered a total of 47 
MOTUs consisting of 21 shark and 26 ray taxa that were 
identifiable to Chondrichthyes when matched against 
sequences on GenBank (≥ 90% for 12S and ≥ 85% for 
COI; Additional files 2, 3). Sixteen of the 47 MOTUs, 
comprising five shark and 11 ray species, had species-
level matches (≥ 98.3% for 12S and ≥ 97% for COI), com-
prising 11, 10 and 5 MOTUs detected with 12S, COI and 
both markers, respectively (Fig. 2). Twenty-two MOTUs 
had 100% identity BLAST matches to multiple species in 
the GenBank database (e.g. Carcharhinus spp.; [53, 54]; 
Additional file 2) and were not analysed further.

Three sampling localities (CYR, RLH and LAZ) with 
the highest number of water samples (n ≥ 22) had spe-
cies accumulation curves plateauing at 10–15 eDNA 
samples for species-identified MOTUs but continuing 
to increase for the all-MOTUs curve (Fig. 3A–C). While 

Fig. 1 Unique sequence reads recorded from sequencing with vertebrate 12S (black) or elasmobranch COI (grey) primers. A Total number of 
unique sequence reads generated from each gene and the relative proportions identifiable to sequences from GenBank (‘Assigned’), from which 
they are segregated into the categories ‘Metazoa’, ‘Actinopterygii’ and ‘Chondrichthyes’. B Total number of Chondrichthyes MOTUs and named 
species units detected for each marker
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non-saturation in the total MOTUs showed that 20 water 
samples were insufficient to capture elasmobranch diver-
sity at each site, species accumulation appeared to satu-
rate when all eDNA water samples across nine localities 
were analysed together (n = 84; Fig.  3D). The species-
identified MOTUs curve plateaued at 16 MOTUs with 
~ 50 water samples, while the total MOTUs curve pla-
teaued at 47 MOTUs with ~ 70 water samples.

Historical records of elasmobranchs in Singapore 
comprised 37 elasmobranch species. Only seven spe-
cies—three sharks and four rays—were sighted over the 
last two decades (Fig. 2, Additional file 2). The remaining 
30 species from historical records not sighted recently 
constituted the pre-eDNA phantom diversity, amount-
ing to 81.1% of the species records (Fig.  4). Our eDNA 
approach detected 16 species, including 14 overlapping 
with historical records (Additional file  2); and of the 
seven contemporary sightings, eDNA could detect all 
species except Atelomycterus marmoratus (Fig. 2; Addi-
tional file 2). Eight historically recorded species with no 
contemporary sightings that were rediscovered by eDNA 
represented ‘unseen diversity’ (Fig.  4; [28]). Therefore, 
the total number of contemporary records (contempo-
rary sightings or eDNA) matching historical records was 

15, up from seven pre-eDNA. Twenty-two species that 
were historically recorded but remained unaccounted 
for (even with eDNA) made up the post-eDNA phantom 
diversity at 59.5% of the historical species records (Fig. 4).

Two species-identified 12S MOTUs that were not 
recorded prior to this study are potential new records for 
Singapore. They are two ray species (Brevitrygon imbri-
cata and Pastinachus sephen) that were either found to 
have relatively high sequence read counts (133–1038, 
Additional file  2) or detected frequently among sites 
(Brevitrygon imbricata with multiple detections at LAZ; 
Pastinachus sephen at CYR and LAZ; Additional file 3).

Distribution patterns and relative abundances
Among the nine localities examined, Lazarus (LAZ; 
S = 13), Cyrene Reef (CYR; S = 12) and Raffles Lighthouse 
(RLH; S = 10) had the highest total shark and ray diversity 
for the 16 MOTUs with species-level matches (Fig.  5). 
LAZ also recorded the highest ray diversity (S = 7), 
whereas CYR had the highest shark diversity (S = 5). 
The most commonly detected elasmobranchs were Car-
charhinus melanopterus and Taeniura lymma; the former 
was detected across all nine sampling localities, while the 
latter was found in eight localities except Open Habitat Y 

Fig. 2 Overlapping elasmobranch diversity in Singapore compiled from historical museum records (black), contemporary sightings (green), as 
well as species detected by eDNA metabarcoding of 12S (blue) and COI (red). Note that Neotrygon orientale is part of a species complex awaiting 
taxonomic revision [80]



Page 5 of 14Ip et al. BMC Ecol Evo          (2021) 21:166  

(OHY). Among the 31 unnamed MOTUs, Carcharhinus 
sp. 9 had the highest occurrence among sites (all 9 sites; 
Additional file 3) while Carcharhinus sp. 8 had the high-
est sequence read counts (up to 86,915; Additional file 2). 
Three other ray MOTUs, Himantura sp. 1, Himantura 
sp. 3 and Neotrygon sp. 3 also recorded high sequence 
read counts and/or abundance across sites.

The relative abundances of the 16 MOTUs with spe-
cies-level matches varied considerably between and 
within sites (Fig. 6, Additional file 4). Six of these species 
were found to be highly abundant overall, accounting 
for 99.3% of all elasmobranch reads. In particular, Car-
charhinus melanopterus reads were the most dominant at 
6 of 9 sites (≥ 70.2%), although the remaining sites also 
had high abundances (13.9%, 15.6% and 38.1% of reads 

at LAB, LSIS and CYR respectively). The latter sites were 
dominated by unique reads from ray species—Macula-
batis gerrardi at CYR and Taeniura lymma at Little Sis-
ter’s Island (LSIS) and Labrador Beach (LAB). Neotrygon 
orientale, Carcharhinus leucas and Chiloscyllium punc-
tatum were also fairly abundant among sites (Fig. 6). The 
remaining 10 species had much lower abundances.

Discussion
eDNA reduces phantom diversity and uncovers potential 
new records
A total of 37 cartilaginous fish species have been 
recorded previously through natural history collections 
and visual observations in Singapore (Additional file  2). 
Only seven species have been sighted over the last two 

Fig. 3 Accumulation curves of MOTUs in water samples from A Cyrene Reefs (CYR), B Lazarus Island (LAZ), C Raffles Lighthouse (RLH), and D all 
sites. Pink curves represent all MOTUs, while blue curves represent only MOTUs with species-level identities. Shaded areas denote confidence 
intervals and boxplots show standard deviation
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decades (Fig.  2, Additional file  2), which could be due 
to the poor water visibility [55] that makes visual detec-
tion challenging [47]. The pre-eDNA phantom diversity 
was therefore relatively high at 81.1% (30 species). We 
applied an eDNA approach and detected 47 shark and 
ray MOTUs, including 16 named species, from 84 water 
samples collected over a 3-year period. We detected 
nearly half of the named species in the historical species 
records, uncovered more than twice the diversity of spe-
cies (S = 15) relative to contemporary sightings of seven 
species, and in turn reduced the phantom diversity to 
59.5% (Fig. 4, Additional file 2). Our results demonstrate 
that although a significant proportion of elasmobranch 
diversity has been missing from species records based 
on decades of visual sightings and conventional surveys, 
eDNA has revealed that these previously missed species 
remain present in Singapore’s waters.

Collectively, the 84 eDNA samples captured consider-
able elasmobranch diversity, with 47 MOTUs or putative 
species, suggesting that more species are present than 

Fig. 4 Phantom diversity decreases with eDNA sampling, which 
uncovers the unseen diversity not detected by conventional 
methods such as specimen collection and visual survey. Note that 
one of the 17 contemporary records (contemporary sightings or 
eDNA), Atelomycterus marmoratus (coral catshark), was not detected 
by eDNA

Fig. 5 Map of sampling locations in Singapore marked with species detected via eDNA. Shark and ray icons refer to the 16 species detected at each 
locality. ‘*’ indicates species recovered by both 12S and COI metabarcoding. (Adapted from https:// commo ns. wikim edia. org/ wiki/ File: Singa pore_ 
Outli ne. svg)

https://commons.wikimedia.org/wiki/File:Singapore_Outline.svg
https://commons.wikimedia.org/wiki/File:Singapore_Outline.svg
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known from Singapore (S = 37). The rapid saturation of 
the species accumulation curves for species-identified 
MOTUs exemplified the remarkable ability of eDNA to 
recover well-studied species. However, this low number 
of known species (S = 16) relative to all MOTUs (S = 47) 
demonstrated that there remain insufficient DNA bar-
codes covering a wide range of elasmobranch species for 
taxonomic matching of eDNA metabarcodes. These uni-
dentified MOTUs could be new records or understud-
ied taxa that are yet to be species-identified with proper 
reference DNA barcodes. More integrative taxonomic 
efforts in documenting biodiversity will help reduce 
phantom diversity even further, uncover new records and 
species, and expand databases to enhance eDNA bio-
monitoring [56–58]. More broadly, diversity estimates 
using eDNA can help drive targeted surveys in discover-
ing and documenting more potential species in the spe-
cies pool, and are also beneficial for providing updated 
richness estimates in areas that are expected to be more 
speciose but challenging to monitor.

To this end, we detected in the eDNA samples two 
species with no matching historical data and are 

potential new records for Singapore (Fig.  2)—Brevit-
rygon imbricata and Pastinachus sephen (Additional 
file  2). Earlier reports from Singapore under different 
names—Trygon imbricata and Hypolophus sephen—
could have alluded to these species [59, 60]. Although 
these taxa underwent recent taxonomic revisions [61, 
62], we have been unable to confirm their presence as 
there were no voucher specimens deposited at Singa-
pore’s Lee Kong Chian Natural History Museum (LKC-
NHM). Nevertheless, our eDNA sequences matched 
barcodes from samples that were collected from known 
ranges of B. imbricata and P. sephen [43]. These two 
MOTUs also have high sequence read counts (Addi-
tional file  2) or were detected at multiple sites (Fig.  5; 
Additional file  3), suggesting that their detection was 
unlikely an artefact of sequencing error. Moreover, Sin-
gapore is within the known natural distribution ranges 
of these two species [61, 62], supporting them as poten-
tial new local records. We emphasise that false positive 
detections cannot be ruled out completely in the HTS 
workflow [63], and thus encourage future work to vali-
date the unseen diversity revealed here (Figs. 3, 4, spe-
cies outside green circle).

Fig. 6 Relative abundances of eDNA reads with species-level identification for all 16 elasmobranch species (A), and 15 species without 
Carcharhinus melanopterus (B)
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Enhancing species detection and resolution
While there are apparent advantages of eDNA meta-
barcoding—including its non-invasiveness and minimal 
reliance on manpower—critical methodological con-
siderations such as locus and primer choices remain 
[64–66]. PCR primers and the targeted genes determine 
the taxonomic resolution at which eDNA metabarcodes 
can be identified. Our previous study found that uni-
versal metazoan primers were less efficient in elasmo-
branch species detection, with only one shark species 
found (Carcharhinus melanopterus; [47]) despite hav-
ing 26 of 84 overlapping water samples. We therefore 
recommended taxon-specific metabarcoding primers 
for higher detection success of target species of interest 
[47], which we demonstrate here for 16 species-identified 
elasmobranchs. The shark-specific COI primers used 
here amplify a 127-bp region of a widely-used barcod-
ing gene that has large reference databases (e.g. Gen-
Bank, BOLD) for sequence matching [65, 67, 68] and 
for which there is sound understanding of its evolution 
[69–71]. However, these primers may be less efficient at 
amplifying a broad range of elasmobranch species and 
the targeted sequences may not have sufficient taxo-
nomic resolution to delimit certain elasmobranch groups 
[28, 38, 72]. While COI primers with degenerate bases 
have been  shown to increase the coverage of elasmo-
branch detection [73], the use of a single primer set can 
bias eDNA results and multiple markers should be used 
instead [74]. Therefore, the 12S rRNA region, which also 
has comprehensive coverage in the reference databases 
[75], was amplified in this study for the broadest possible 
taxonomic coverage (see [64, 65]).

The ambiguity of identification resulting from 100% 
matches of some sequences to multiple species highlights 
either possibilities of matching to reference sequences 
that were incorrectly identified, or limited resolution of 
12S and COI for identifying a few elasmobranch taxa. 
Closer scrutiny of GenBank records is recommended to 
discern if these sequences match database entries that 
have been accurately identified and tagged with updated 
taxonomic names. To address the latter, alternative prim-
ers can be designed for longer target fragments (> 200-bp) 
to increase taxonomic resolution [76, 77]. Furthermore, 
conventional DNA barcoding research can prioritise 
these groups for database expansion, targeting alterna-
tive gene fragments which could yield higher resolution 
for species delimitation, including cytochrome b [78], 
control region [79] and NADH dehydrogenase subunit 
2 [80]. These measures could aid in detecting ‘expected’ 
species at localities where they have been recorded and 
to preclude false negatives. Ultimately, improving primer 
design, targeting longer gene fragments (300–400-bp; 
[66]) and regions with higher variability will help enhance 

the taxonomic resolution of species detection, thereby 
harnessing the full potential of eDNA to better comple-
ment conventional methods in the conservation, man-
agement and biomonitoring of sharks and rays.

Local conservation and management of elasmobranchs
Compared to earlier studies focusing on shark detec-
tion in more pristine marine environments [28, 81], our 
study targeted elasmobranch species in an anthropo-
genically-impacted environment where shark diversity 
was expected to be low [38]. Indeed, our eDNA results 
detected just five sharks but 11 ray species across mul-
tiple localities (Fig.  2). These more than double the 
contemporary records of elasmobranchs in Singapore, 
suggesting that some diversity of elasmobranch fauna 
remains, albeit cryptically. This may likely be the case 
for other highly urbanised coastal environments as well. 
Moreover, the phantom diversity in Singapore has been 
reassessed here and is now lower (59.5%) than before 
eDNA was applied (81.1%; Fig.  4). Of the remaining 22 
undetected species, only three—Telatrygon biasa, Tem-
era hardwickii and Urogymnus granulatus—do not have 
either 12S or COI sequences on GenBank. Implicitly, 
these species could have remained undetected by eDNA 
due to absence of reference sequences for species match-
ing. Further investigations are needed for the 19 unac-
counted species to discern if absences are due to limits of 
present eDNA methods or from local extirpations.

Formulation of conservation and management strate-
gies typically require sightings data for taxa of concern 
[12, 82]. This is challenging for elasmobranchs in urban-
ised, turbid environments such as Singapore due to the 
low water visibility. eDNA presents an alternative and 
viable method for monitoring multiple shark and ray 
species simultaneously, especially in areas where visu-
ally-reliant methods such as BRUVs, UVCs and drones 
are less effective. The ability of eDNA to complement 
visual methods will enable researchers to better assess 
the extent of declines and absences. To ascertain that 
the absences are due to actual extirpations and rule out 
learned avoidance behaviour of sharks in urban envi-
ronments [16], we suggest integrating eDNA with visual 
methods to validate these possible losses so as to chart 
suitable policy pathways for management and restoration 
of elasmobranch populations [12].

Apart from being an alternative sampling method with 
more consistent detection results, the utility of eDNA 
goes beyond simply reducing phantom diversity [14, 
28]. Accurate assessments of relative abundances are 
often thought to be challenging with most biases stem-
ming from the use of universal primers for broad meta-
barcoding work [83], but it has become increasingly 
evident that using a multi-marker approach with several 
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species-specific primers could effectively circumvent 
this issue [51, 74]. In particular, we used a combination 
of shark- and vertebrate-specific primers to infer relative 
abundances [84] of elasmobranchs in Singapore, data that 
are essential for robust management efforts. Mapping 
species distributions and estimating relative abundances 
of elasmobranch eDNA signals (Figs.  5, 6) highlighted 
potential diversity hotspots which are of conservation 
concern. For example, our data show that sites like CYR, 
LAZ and RLH host richer assemblages of sharks and rays, 
corroborating existing knowledge from citizen science 
records [49] that could lend further support for site pro-
tection measures. Furthermore, eDNA analysis here has 
expanded the local ranges of two ray species (Neotrygon 
orientale and Brevitrygon heterura), previously reported 
only along Singapore’s northern coastline [49], to now 
include areas south of the main island (Fig. 5).

Despite overwhelming evidence supporting the viabil-
ity of normalised read counts for abundance estimates 
[85], we acknowledge the associated limitations where 
eDNA can only provide rough assessments of relative 
abundances [83]. While biases from complex eDNA 
dynamics such as shedding rates between species remain 
to be addressed, body mass has been demonstrated to 
positively correlate with read counts especially for larger-
sized organisms with higher DNA shedding rates [86], 
such as the elasmobranchs in this study [8]. The corre-
spondence between relative abundance and frequency 
of visual observations (Additional file  4) also supports 
eDNA for quantitative measures [87]. Nevertheless, 
approaches such as the Hellinger transformation of read 
counts can enhance eDNA’s reliability for quantifying 
abundances, and it must be emphasised that normalisa-
tion is required at the very least to avoid biased infer-
ences [88]. Another potential workaround for improving 
abundance estimates involves the addition of internal 
DNA standards, where known DNA concentrations of 
non-target species are included into eDNA samples for 
copy number correction [89]. Collectively, these strate-
gies can increase the confidence of quantifying abun-
dances from eDNA metabarcoding results.

Relative abundance estimates of species that are of 
conservation concern can facilitate projections of their 
habitat preferences [90]. For instance, we detected six 
‘Vulnerable’ species according to IUCN Red List of 
Threatened Species (IUCN 2020)—Aetobatus ocellatus, 
Carcharhinus falciformis, Carcharhinus melanopterus, 
Himantura uarnak, Maculabatis gerrardi and Rhinoptera 
javanica. We found three possible residency hotspots, 
such as BSIS for C. falciformis, LAZ for R. javanica, and 
CYR for A. ocellatus, H. uarnak and M. gerrardi, sup-
porting more stringent site protection to conserve these 
threatened elasmobranchs. The current inability of eDNA 

methods to discern body sizes, sex and developmental 
stages of organisms [28] remains a key limitation in this 
case. Nevertheless, eDNA methods are ideal components 
of a comprehensive monitoring toolkit that can provide 
spatial information critical for formulating actionable 
management plans and policies [84, 91, 92].

Conclusion
We have here demonstrated the utility of eDNA detec-
tion of sharks and rays from HTS of seawater samples. 
By comparing our results with natural history collections 
and visual survey reports, we show that eDNA metabar-
coding of seawater samples for elasmobranch detection 
in Singapore is a more viable and consistent approach 
to monitor these elusive species over survey sightings. 
Despite substantially reducing the phantom diversity of 
sharks and rays, the number of undetected yet expected 
species remains high (S = 22). On the one hand, these 
may represent dark diversity, or true local extinctions due 
to species’ inability to thrive in a hyper-urbanised coastal 
environment. On the other hand, it could mean that a 
large number of elasmobranchs remain as phantom spe-
cies in Singapore, having successfully evaded detection 
thus far, highlighting the urgent need to improve our 
biomonitoring methods so as to better understand and 
manage the numerous threats against elasmobranch pop-
ulations here [28].

eDNA metabarcoding methods have shown enormous 
promise for complementing conventional methods in 
biomonitoring, species discovery and conservation appli-
cations. Emerging platforms can further propel eDNA’s 
utility and relevance in these fields by providing oppor-
tunities for real-time eDNA metabarcoding with nano-
pore sequencing [81], improved species specificity with 
hybrid capture metabarcoding [93], as well as field detec-
tion with loop-mediated isothermal amplification assays 
(LAMP; [73]) and the ‘Specific High-sensitivity Enzy-
matic Reporter un-LOCKing’ method (SHERLOCK; [94, 
95]). These novel approaches can be easily incorporated 
into field-ready laboratories for mobile biomonitoring 
[57]. Besides improving the design of higher-resolution 
primers to eradicate false negatives from the current 
eDNA experimental design, application of these new 
techniques may address many of the limitations here. For 
instance, the heightened single-species specificity with 
LAMP [73] can be used to search for the missing coral 
catshark (Fig. 2, Additional file 2) and for validating the 
presence of MOTUs detected solely by eDNA. The con-
tinual development and application of sensitive detec-
tion methods will further reduce phantom diversity and 
enhance our confidence in species absences and local 
extinctions.
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Beyond the abovementioned uses of eDNA, we are 
learning more about its applicability to more exten-
sive and varied research problems, such as interpreting 
sequences for metaphylogeography [96] and studying 
intraspecific diversity [97]. With rapid advancements in 
detection technologies and increasingly diversified appli-
cations, eDNA is likely to play an increasingly significant 
role in biomonitoring, management and conservation, 
especially of threatened taxa and habitats.

Methods
Water sampling and processing
A total of 84 2-L water samples were collected from the 
subtidal and intertidal areas at nine localities south of 
mainland Singapore between March 2017 and April 2019 
(Fig. 5), of which 26 samples were from a previous study 
[47]. Subtidal sites were sampled at two depths, 1 m (shal-
low) and 10 m (deep) from the sea surface. The localities 
represented a variety of coastal environments, including 
coral reefs, seagrass, mangroves and open water habitats.

All water samples were collected under clear weather 
conditions. For subtidal sites, 2-L water samples were 
collected from a 5-L Van Dorn water sampler. Intertidal 
samples were collected by hand using two sterile 1-L bot-
tles at each of two sampling points that were at least 10 m 
apart, starting with the first collection at a downstream 
position relative to the current and moving upstream for 
the second collection to reduce chances of contamina-
tion from the collectors. Water samples were kept on ice, 
transported back to the laboratory for vacuum-filtering 
through sterile nylon filter membranes (Thermo Scien-
tific; diameter, 47 mm; pore size, 0.22 μm) in autoclaved 
filter units, and subsequently stored at − 80 °C. The time 
from collection to storage took < 2 h.

Contamination control measures included cleaning 
of all working surfaces, laboratory apparatus and sam-
pling equipment with 20% household bleach diluted with 
Milli-Q water. All collection bottles and filtration equip-
ment (filter units and membranes) were autoclaved and 
disposable gloves were also disinfected with 20% bleach 
prior to use. All post-filtration work was performed in a 
biological safety cabinet. Negative controls for field col-
lection, DNA extraction and polymerase chain reaction 
(PCR) were set up and processed in the same way as the 
samples to identify potential contamination; we used 
molecular-grade water in place of template DNA for the 
negative controls.

eDNA extraction, amplification and sequencing
Filter membranes were first incubated in 900  μL 
CTAB (hexadecyltrimethylammonium bromide) with 
20  μL of 20  mg/mL proteinase K for 3  h at 55  °C. The 
digest was then purified via phase separation with 

phenol:chloroform:isoamyl-alcohol (25:24:1) and incu-
bated in 60% isopropanol for 16 h at − 30 °C to increase 
DNA recovery and yield.

For the metabarcoding assay, we amplified two gene 
fragments—12S-V5 ribosomal RNA and cytochrome c 
oxidase subunit I (COI). The 12S-V5 locus (85–117-bp 
amplicon) was amplified using the ecoPrimers primer 
set, F: 5ʹ-ACT GGG ATT AGA TAC CCC -3ʹ, and R: 5ʹ-TAG 
AAC AGG CTC CTC TAG -3ʹ [50]. For COI, we used two 
universal fish barcoding forward primers, FishF1: 5ʹ-TCA 
ACC AAC CAC AAA GAC ATT GGC AC-3ʹ and FishF2: 
5ʹ-TCG ACT AAT CAT AAA GAT ATC GGC AC-3ʹ [98], 
along with an elasmobranch-specific reverse primer 
SharkCOI-MINIR: 5ʹ-AAG ATT ACA AAA GCG TGG 
GC-3ʹ [99] to amplify a 127-bp fragment (see [28, 38]). 
Both 12S and COI primers were respectively tagged 
with unique 9-bp or 8-bp sequence tags at the 5ʹ end to 
allow sequence-to-sample association in the downstream 
demultiplexing step [100]. We ensured that each reaction 
had its own unique sequence tag combination (for up to 
96 unique tag combinations for each gene).

Five PCR replicates were performed for each gene per 
water sample, for a total of 840 reactions (84 samples × 5 
replicates × 2 genes). Each PCR reaction mix, compris-
ing a total volume of 25  μL, contained 0.5  μM of each 
primer (Integrated DNA Technologies), 0.5  μg bovine 
serum albumin (New England Biolabs), 25  mM mag-
nesium chloride (New England Biolabs), 5  μL template 
DNA, 9.25 μL sterile water with 1U BioReady rTaq DNA 
polymerase with 1× reaction buffer (v/v) (Bulldog Bio 
Inc., China) for the 12S vertebrate primers, and 12.5 μL 
of GoTaq DNA polymerase for the elasmobranch COI 
primers. The thermal cycling profile for 12S-V5 was 
95 °C for 7 min, 36 cycles of 94 °C for 30 s, 52 °C for 30 s, 
72  °C for 40  s, and a final extension for 5 min at 72  °C; 
while for COI it was 95 °C for 15 min, 36 cycles of 94 °C 
for 1  min, 52  °C for 1  min, 72  °C for 1  min, and a final 
extension for 5 min at 72  °C. Amplification success was 
verified on 2% agarose gels stained with GelRed (Cam-
bridge Bioscience).

A total of 840 tagged amplicon samples and 940 nega-
tive controls were then combined into 20 pools (up to 96 
unique PCR reactions each; see above) and cleaned using 
1.5–1.8× AMPure XP magnetic beads (Beckman Coul-
ter). PCR-free library preparation was performed where 
each of these 20 library pools were further multiplexed 
with unique Illumina adapters (Set B), using NEBNext 
Ultra II DNA Library Prep Kit (New England Biolabs) fol-
lowing manufacturer’s protocol up to the adapter ligation 
step (i.e. no PCR enrichment). The libraries were pooled 
in equimolar ratios and outsourced to the Genome Insti-
tute of Singapore for sequencing over three lanes of Illu-
mina HiSeq 4000 (151 × 151-bp paired ends), each spiked 
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with 20% PhiX to improve base diversity. We allocated 
a sequencing depth of up to 1  million reads per ampli-
con sample to increase the detection chances of rare taxa 
[101].

Bioinformatics and data analyses
Illumina paired-end reads were merged using PEAR 
v0.9.11 [102]. Maximum assembly length (m) was set 
at 200-bp and quality score threshold (q) was set at 20. 
Minimum assembly length (n) was set to 100-bp and 
80-bp for 12S and COI respectively. OBITools v1.2.11 
[103] was used for demultiplexing and further process-
ing of assembled reads. As we previously observed that a 
poorer quality of reverse reads would affect the integrity 
of the reverse barcode tags and in turn, lower demulti-
plexing efficacy [47], we demultiplexed sequence reads to 
respective PCR replicates using only the unique forward 
primer tag. For demultiplexing via ngsfilter, we used the 
default settings, where no mismatch was allowed for bar-
code tags, while up to two mismatches were allowed for 
the primer sequences. Following which, cutadapt v1.18 
[104] was used to remove the reverse primer and tag 
sequences. All successfully demultiplexed and primer-
free reads were concatenated into a single file, sequence 
records grouped, and dereplicated using obiuniq. Finally, 
sequences were binned into PCR replicate files using 
obisubset.

The dataset was filtered for metazoan sequences using 
BLASTn implemented on BLAST+ v2.8.1 [105] to match 
against the NCBI nt database (downloaded 2nd Sep-
tember 2019), retaining only sequence reads with ≥ 80% 
sequence similarity. The output was parsed with read-
sidentifier v1.0 [106] to obtain preliminary taxonomic 
identities of each sequence. Only sequences assigned 
to ‘Chondrichthyes’ (≥ 80% sequence similarity) were 
retained for further analyses. This step also allowed us to 
eliminate non-target reads from the dataset.

Quality filters were applied to eliminate reads with 
amplification and sequencing errors, while ensuring that 
read coverage was comparable across samples. We imple-
mented a read count filter for each PCR replicate based 
on a relative threshold. Only sequences whose abundance 
exceeded 0.0001  (1e−4) of the total read count for the 
PCR replicate were used in the analyses; i.e., sequences in 
replicates with higher read counts have to meet a higher 
threshold in order to be retained for analysis. To imple-
ment this filter, we used the obistat module to summarise 
the total read count per replicate file. However, in some 
of the  1e−4 datasets, we found that singleton reads had 
met the threshold. These were subsequently excluded 
by setting a minimum read count of ≥ 2 with obigrep, 
which was also set to retain sequences of lengths 90–140-
bp and 80–120-bp for 12S and COI respectively. We 

then used obiclean to collapse sequences with potential 
PCR sequencing errors into respective unique sequence 
reads. Sequences from sample PCR replicates were also 
matched against sequences found in the negative PCRs; 
although none of these sequences were elasmobranch 
sequences, they were still deemed potential contami-
nants and removed from downstream analyses.

Taxonomic assignment was performed by applying 
respective species delimitation thresholds (class-level 
identity ≥ 90% for 12S and ≥ 85% for COI; species-level 
identity ≥ 98.3% for 12S [43] and ≥ 97% for COI [107] 
for each gene (Additional file  2) to collapse the unique 
sequence reads into MOTUs [108]. We eliminated poten-
tial false positives by removing MOTUs present in only 
one PCR replicate and/or taxa that have documented 
ranges outside the Indo-Pacific. Additionally, MOTUs 
that were (i) not assigned species-level identities, or (ii) 
matched at high percentages (99–100%) to multiple taxa 
within the same or different genera respectively were also 
removed.

To estimate elasmobranch species richness, we plotted 
species accumulation curves for all MOTUs and MOTUs 
with species-level identities against number of water 
samples collected using the specaccum function [109] 
of vegan v2.5 package [110] in RStudio (R Core Team, 
2017). Sequence read counts were normalised by sample 
read depth to estimate the relative abundances of elasmo-
branch species [88].

Compiling historical species records
Records of elasmobranch species reported from Singapore 
(not via eDNA) were consolidated through three differ-
ent sources. First, historical records of shark and ray spe-
cies (from the 1960s) were obtained from the collection 
at LKCNHM. Second, contemporary sightings were com-
piled from two decades of citizen-science reports (2000–
2019), supported by in-situ images, and obtained from 
WildSingapore (http:// www. wilds ingap ore. com/ wildf acts; 
[49]). Third, elasmobranch species documented in the grey 
literature from 2003 to 2019 were also compiled, and these 
were noted to fully overlap with both historical records 
and contemporary sightings. We then integrated all three 
datasets, removing overlapping records to estimate phan-
tom diversity before and following the application of 
eDNA in this study (Additional file 2).
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