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Abstract 

Background: Chinese grass shrimp (Palaemonetes sinensis) is an important species widely distributed throughout 
China, which is ecologically relevant and possesses ornamental and economic value. These organisms have expe-
rienced a sharp decline in population due to overfishing. Therefore interest in P. sinensis aquaculture has risen in an 
effort to alleviate fishing pressure on wild populations. Therefore, we investigated the genetic diversity and variation 
of P. sinensis to verify the accuracy of previous research results, as well as to assess the risk of diversity decline in wild 
populations and provide data for artificial breeding.

Methods: Palaemonetes sinensis specimens from seven locations were collected and their genetic variability was 
assessed based on mitochondrial COI gene segments. DNA sequence polymorphisms for each population were esti-
mated using DNASP 6.12. The demographic history and genetic variation were evaluated using Arlequin 3.11. At last, 
the pairwise genetic distance (Ds) values and dendrograms were constructed with the MEGA 11 software package.

Results: Our study obtained sequences from 325 individuals, and 41 haplotypes were identified among the popula-
tions. The haplotype diversity (Hd) and nucleotide diversity (π) indices ranged from 0.244 ± 0.083 to 0.790 ± 0.048 and 
from 0.0004 ± 0.0001 to 0.0028 ± 0.0006, respectively. Haplotype network analyses identified haplotype Hap_1 as a 
potential maternal ancestral haplotype for the studied populations. AMOVA results indicated that genetic variations 
mainly occurred within populations (73.07%). Moreover, according to the maximum variation among groups (FCT), 
analysis of molecular variance using the optimal two-group scheme indicated that the maximum variation occurred 
among groups (53.36%). Neutrality and mismatch distribution tests suggested that P. sinensis underwent a recent 
population expansion. Consistent with the SAMOVA analysis and haplotype network analyses, the Ds and FST between 
the population pairs indicated that the JN population was distinctive from the others.

Conclusions: Our study conducted a comprehensive characterization of seven wild P. sinensis populations, and our 
findings elucidated highly significant differences within populations. The JN population was differentiated from the 
other six populations, as a result of long-term geographical separation. Overall, the present study provided a valuable 
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Background
Chinese grass shrimp (Palaemonetes sinensis) is an 
important species belonging to the Palaemonidae fam-
ily, which is widely distributed throughout China [20, 
23]. These organisms are not only ecologically relevant 
but also possess ornamental and economic value [16, 36]. 
Additionally, P. sinensis is very popular in both domestic 
and foreign markets due to its pleasant flavor and high 
nutritional value [16, 37]. However, the wild populations 
of P. sinensis have gradually declined due to environmen-
tal pollution and overharvesting, and therefore interest in 
P. sinensis aquaculture has risen in an effort to potentially 
alleviate fishing pressure on wild populations by produc-
ing farmed shrimp to meet consumer demand. There-
fore, our research group has conducted several studies 
on P. sinensis, including studies on morphology [38], 
physiology [3], immunology [9, 21, 22], genetic diversity 
[36], and phylogenetic relationships [37] among others. 
However, studies on the population genetic diversity and 
structure of this species remain scarce. It is well known 
that the study of population genetic diversity and genetic 
structure could provide guidance for the establishment 
of fishing quotas to prevent overharvesting [36]. At the 
same time, it is very necessary to understand the genetic 
structure and genetic diversity of wild P. sinensis popula-
tions, and to correctly evaluate the status of germplasm 
resources prior to artificial breeding, which can provide 
a basis for the selection of breeding populations [36]. 
Therefore, more research is needed to understand the 
genetics of this species.

COI gene sequence polymorphisms serve as “barcodes” 
to identify different species and assess cryptic diversity 
[15, 31] and have thus been increasingly used to inves-
tigate population genetics, taxonomy, molecular evolu-
tion, phylogeny relationship origins, and the diversity 

of Palaemonidae species such as Macrobrachium aus-
traliense [4], Macrobrachium olfersii [25], Palaemon 
longirostris and Palaemon garciacidi [5], and Palaemon 
capensis and Palaemon peringueyi [32]. In our previous 
study, we investigated the genetic diversity and struc-
ture of P. sinensis using transcriptome-derived micro-
satellite markers [37]. The results indicated that two 
populations, LD and SJ, had the lowest genetic diversity 
and were markedly different from the other popula-
tions. Given that microsatellites represent changes in the 
nuclear genome, the microsatellite markers obtained via 
transcriptome analysis represented sequences of coding 
regions in the genome, which are highly conserved and 
may underestimate population genetic diversity. There-
fore, further studies are needed to establish the relation-
ship and genetic variability among P. sinensis populations 
in China using different molecular markers. The COI 
gene polymorphisms represent changes in the mitochon-
drial DNA (mtDNA) genome. Thus, in this study, COI 
gene fragments were characterized to investigate the 
genetic diversity and population structure of seven wild 
P. sinensis populations in China. Through this study, we 
sought to verify the accuracy of previous research results, 
assess whether there is a risk of diversity decline in wild 
populations, and provide data for artificial breeding. 
Additionally, this genetic survey provides valuable infor-
mation for the development of effective conservation and 
management strategies for this species and establishes a 
theoretical basis for the future study of the genetic biodi-
versity of P. sinensis.

Methods
Sampling, DNA extraction, and sequencing
A total of 326 wild individuals were collected from 
seven locations in China (Table 1, Fig. 1), and stored in 

basis for the management of genetic resources and a better understanding of the ecology and evolution of this 
species.

Keywords: Palaemonetes sinensis, COI gene, Genetic variability, Population genetics

Table 1 Sampling localities, geographic position of P. sinensis 

Populations Sampling locations Geographic position Sample size

DL Liaoning Dalian Sha River 39.622° N 122.067° E 46

PJ Liaoning Panjin Shuangtaizi River 41.180° N 122.067° E 44

AS Liaoning Anshan Yangliu River 41.082° N 122.847° E 47

SL Liaoning Shenyang Longwei Lake 41.842° N 123.589° E 47

SY Liaoning Shenyang Yangshi reservoir 41.978° N 123.691° E 48

SH Liaoning Shenyang Huangjia Liao River 42.146° N 123.472° E 48

JN Shandong Jining Dushan Lake 35.033° N 116.702° E 46
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75% alcohol directly. Genomic DNA was extracted from 
individual muscle samples using the TIAnamp Marine 
Animals DNA Kit (TIANGEN, China) according to 
the manufacturer’s instructions, and the quality of the 
extracted DNA was assessed via electrophoresis on a 1% 
agarose gel coupled with spectrophotometric analyses 
using a Thermo Scientific NanoDrop 2000 system.

The COI gene sequence was partially amplified via 
polymerase chain reaction (PCR) using the LCO1490 
and HCO2198 primers [13]. Each PCR reaction (25  μL 

per reaction) contained 100 ng of template, forward and 
reverse primers (10  μmol/L; 1  μL each), 12.5  μL of 2× 
Taq PCR Master Mix (TIANGEN, China), and  ddH2O 
[35]. Denaturation was conducted for 3 min at 94 ℃, fol-
lowed by 35 cycles at 94 ℃ for 30 s, 53 ℃ for 40 s, and 
72 ℃ for 40  s, with a final prolonged extension step at 
72 ℃ for 10 min. The PCR products were then assessed 
via electrophoresis in 1% agarose gels [35], then purified 
and sequenced by Sangon Biotech (Shanghai) Co., Ltd.

Fig. 1 Sampling collection sites of P. sinensis (see Table 1 for the full description of the populations). ArcMap 10.4 was used to produce a distribution 
map. The base map for the depiction was obtained freely from the URL: https:// www. natur alear thdata. com/ downl oads/

https://www.naturalearthdata.com/downloads/
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Data analysis and phylogenetic relationship
All COI gene fragments were sequenced in both direc-
tions and the assembled sequences were manually 
inspected for quality assurance. Afterward, all sequences 
were aligned using Clustal Omega (https:// www. ebi. ac. 
uk/ Tools/ msa/ clust alo/) [28]. DNA sequence polymor-
phisms including the highest number of haplotypes (h), 
number of segregating sites (S), average number of dif-
ferences (K), haplotype diversity (Hd), and nucleotide 
diversity (π) values for each population were estimated 
using DNASP 6.12 [26]. Haplotypes for specific sample 
populations were also identified with DNASP 6.12 and 
haplotype networks were visualized with the PopART 
(Population Analysis with Reticulate Trees) network 
analysis software [19] using the TCS network inference 
method [8].

To estimate demographic history, Tajima’s D and Fu’s Fs 
tests were used to examine neutrality, and mismatch dis-
tribution analysis was also performed to assess the popu-
lation expansion hypothesis using Arlequin 3.11 (10,000 
permutations) [11]. Additionally, the relative population 
sizes before (θ0) and after (θ1) were also determined using 
Arlequin 3.11. The correlation between the observed 
and simulated distributions was tested using the SSD 
and HRI. The time of expansion was calculated with the 
formula

where μ = generation time × number of base pairs per 
sequence × mutation rate for the marker used, and τ was 
calculated in Arlequin 3.11. A mutation rate of 1.4% per 
million years [18] and a generation time of 1.5 years were 
assumed for all calculations. This generation time was 
established based on previous literature on other Palae-
monidae shrimps species [32].

Genetic variation was evaluated via AMOVA [12] and 
pairwise FST were calculated using Arlequin 3.11 with 
10,000 permutations [11]. SAMOVA 2.0 [10] was used to 

T = τ/2µ,

identify the defined drainage groups in the greatest vari-
ation among groups (FCT). The Ds values among popula-
tions based on the Kimura 2-parameter model were then 
calculated, after which the UPGMA and NJ dendrograms 
were constructed with the MEGA 11 software package 
[29].

Results
Sequence variation and genetic diversity
674 base pair sequences of the COI gene was obtained 
for downstream analyses. In 326 individuals of seven 
populations, 37 polymorphic sites were identified in 
this sequence, 21 of which were parsimony-informative. 
Moreover, the highest number of h, S, K, Hd, and π val-
ues were observed in the SL population (h = 15, S = 25, 
K = 1.885, Hd = 0.790 ± 0.048, and π = 0.0028 ± 0.0006), 
whereas the lowest values were observed in the DL pop-
ulation (h = 5, S = 4, K = 0.257, Hd = 0.244 ± 0.083, and 
π = 0.0004 ± 0.0001) (Table  2). Overall, most locations 
exhibited moderate to high haplotype diversity (0.244–
0.790) due to large number of unique haplotypes. How-
ever, nucleotide diversity was relatively low, ranging from 
0.0004 to 0.0028.

Haplotype network analysis
A total of 41 haplotypes were defined according to all 
variable positions in the COI gene from seven popu-
lations (Additional file  1: Table  S1, GenBank Acces-
sion numbers: MT884019–MT884059). Among these 
haplotypes, 29 were singleton. For the shared haplo-
types, 193 out of 326 (59.20%) individuals belong to 
one haplotype (Hap_1) in six populations (excluding 
JN population). There were 6 to 15 unique haplotypes 
within the populations but only eight haplotypes were 
shared between/among populations and no common 
haplotype was shared across all populations. A gene-
alogy with one essential haplotype (Hap_1) was iden-
tified from the haplotype network based on the TCS 

Table 2 List of the genetic diversity estimates of P. sinensis populations

h: Number of haplotypes; hʹ: No. of unique haplotypes; S: Number of segregating sites; K: Average number of differences; Hd: Haplotype diversity; π: Nucleotide 
diversity; SD: standard deviation

Population h hʹ S K Hd ± SD π ± SD

DL 5 3 4 0.257 0.244 ± 0.083 0.0004 ± 0.0001

PJ 10 6 12 0.884 0.371 ± 0.094 0.0013 ± 0.0005

AS 6 2 8 0.650 0.309 ± 0.085 0.0010 ± 0.0004

SL 15 10 25 1.885 0.790 ± 0.048 0.0028 ± 0.0006

SY 8 5 6 0.691 0.539 ± 0.071 0.0010 ± 0.0002

SH 6 2 8 0.959 0.601 ± 0.070 0.0014 ± 0.0004

JN 7 5 9 0.588 0.382 ± 0.088 0.0009 ± 0.0003

Mean 1.116 0.627 ± 0.029 0.0017 ± 0.0005

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
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inference method and all other haplotypes arose from 
it through one or several mutational steps (Fig. 2). Due 
to its central position in the network and exhibiting 
the highest frequency, haplotype Hap_1 might be the 
maternal ancestral haplotype for the P. sinensis popu-
lations in this study. Among other haplotypes, seven 
shared haplotypes were identified (Hap_6, Hap_8, 
Hap_9, Hap_15, Hap_18, Hap_20, and Hap_24) and 
33 unique haplotypes were found to derive from the 
above-mentioned haplotypes within seven mutational 
steps. For the JN population, six singleton haplotypes 
were derived from its dominant haplotype (Hap_15) 
within one or two mutation steps.

Population expansion
Both Tajima’s D and Fu’s Fs tests showed negative val-
ues for all populations (Table 3), most of which reached 
a significant level (P < 0.05). The results for four popula-
tions (DL, PJ, SL, and JN) were found to be extremely 

significant (P < 0.01) for both tests, indicating a departure 
from mutation-drift equilibrium and potential popula-
tion demographic expansion.

The population sizes before expansion (θ0) were zero 
for all populations, whereas population size after expan-
sion (θ1) in the SL, SY, and SH populations were notice-
ably larger than in the other populations (Table  3). 
Furthermore, mismatch distribution did not differ sig-
nificantly from the sudden expansion model when using 
either the sum of squared deviations (SSD) or Harpend-
ing’s raggedness index (HRI) for goodness-of-fit. A 
pattern of population expansion for P. sinensis was sup-
ported by the unimodal mismatch analysis (Fig. 3). Fur-
ther, SSD and HRI were not statistically different from 
the model-predicted frequency (SSD = 0.009, P > 0.05; 
HRI = 0.201, P > 0.05) (Table 3).

Coalescence analyses demonstrated that the age of 
expansion in units of mutational time (τ) was highly vari-
able (0.469–3.000) among the populations. Using a muta-
tion rate of 1.4% per million years [18], the expansion of 

Fig. 2 TCS network of P. sinensis based on COI haplotypes. The sizes of the circles indicate the number of individuals with each given haplotype. 
The number in the bracket represents the mutation steps between haplotypes and the black circles on the line represent an additional mutational 
change
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the P. sinensis population was estimated to have occurred 
approximately 16,000 to 106,000  years ago. The value 
of τ for the entire dataset was 1.783, corresponding 

to a demographic expansion origin of approximately 
63,000  years before the present time for P. sinensis 
(Table 3).

Table 3 Neutrality test and mismatch distribution analysis of P. sinensis populations

τ: age of expansion in units of mutational time; θ0: population size before expansion; θ1: population size after expansion; SSD: sum of squared deviations; HRI: 
Harpending’s raggedness index; t: Expansion time; Ma: millions of years ago

*P < 0.05; **P < 0.01

Population Neutrality test Mismatch distribution analysis Expansion time

Tajima D Fu’s Fs τ θ0 θ1 SSD HRI t(Ma)

DL − 1.659* − 4.070** 3.000 0.000 0.341 0.003 0.322 0.106

PJ − 2.057** − 6.494** 3.000 0.000 0.571 0.010 0.240 0.106

AS − 1.928* − 2.448 3.000 0.000 0.421 0.018 0.359 0.106

SL − 2.201** − 7.914** 1.387 0.000 99,999.000 0.007 0.070 0.049

SY − 1.254 − 4.723* 0.768 0.000 99,999.000 0.003 0.098 0.027

SH − 1.287 − 1.207 0.861 0.000 99,999.000 0.013 0.130 0.030

JN − 2.153** − 4.119** 0.469 0.000 9.455 0.007 0.190 0.017

mean − 1.751* − 4.425* 1.783 0.000 42,858.255 0.009 0.201 0.063

Fig. 3 Mismatch distributions of the P. sinensis haplotypes in each population. The bars represent the observed values, whereas the curves 
represent the expected values

Table 4 Results of AMOVA and SAMOVA of P. sinensis populations

d.f.: Degree of freedom

**P < 0.01

Groups Source of variation d.f Sum of squares Variance 
components

Percentage of 
variation (%)

Fixation indices

AMOVA One group Among populations 6 46.159 0.156 26.93 FST = 0.269**

Within populations 319 135.133 0.424 73.07

Total 325 181.291 0.580

SAMOVA 1. PJ + SL + AS + DL + SY + SH Among groups 1 40.618 0.501 53.36 FSC = 0.033**

2. JN Among populations 
within groups

5 5.478 0.014 1.53 FST = 0.549**

Within populations 319 135.133 0.424 45.11 FCT = 0.534

Total 325 181.291 0.939
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Genetic divergence and distance among populations
The analysis of molecular variance (AMOVA) test indi-
cated that the genetic variances within and among popu-
lations were 26.93% and 73.07%, respectively (Table  4). 
Furthermore, separating the seven populations into two 
groups maximized the variation among groups (FCT) 
as suggested by spatial analysis of molecular variance 
(SAMOVA) analysis (Table  4). The two groups were 
PJ + SL + AS + DL + SY + SH and JN. Analysis of molec-
ular variance using the optimal two-group scheme indi-
cated that the highest variation (53.36%) occurred among 
groups, whereas the variance within populations was 
45.11%.

The pairwise Wright’s fixation index (FST) values among 
the seven studied populations ranged from −  0.0029 to 
0.7052, most of which were highly significant (P < 0.01) 
(Table  5). Additionally, based on the criteria for genetic 
differentiation proposed herein, JN exhibited very high 
genetic differentiation (FST > 0.25) relative to other popu-
lations, as demonstrated by its FST values ranging from 
0.4555 to 0.7052, all of which were found to be extremely 
significant [33]. The pairwise genetic distance (Ds) val-
ues between the seven examined P. sinensis populations 
were calculated according to the Kimura 2-parameter 
model (Table 5, below diagonal). The values ranged from 
0.0007 to 0.0034, further supporting the low genetic dif-
ferentiation between the populations. Figure 4 illustrates 
the generated UPGMA and NJ trees based on the Kimura 
2-parameter genetic distance. The JN population was 
separated from all six remaining populations.

Discussion
Genetic diversity
Previous reports have explored the genetic diversity of 
different Palaemonidae populations based on the mtDNA 
COI gene. However, our study is the first to examine 
the population-wide genetic variability of P. sinensis 
using mtDNA. Compared with other Palaemonidae, the 
haplotype diversity (Hd = 0.627) of P. sinensis was simi-
lar to that of P. capensis (Hd = 0.607) and P. peringueyi 

(Hd = 0.795) in South Africa [32], but lower than several 
other species such as M. australiense (Hd = 0.924) [4], M. 
olfersii (Hd = 0.94) [25], and P. longirostris and P. garcia-
cidi (Hd = 0.97) [5]. The lower genetic diversity observed 
herein was similar to our previous reports using micro-
satellite markers, which may be due to poor swimming 
ability, as well as the time or space constraints during P. 
sinensis sampling [37].

Overall, the P. sinensis populations showed high hap-
lotype diversity (Hd = 0.627) but low nucleotide diver-
sity (π = 0.0004) in this study. The remarkably lower 
nucleotide diversity (π < 0.005) may be due to the com-
mercial overexploitation of wild stocks, as P. sinensis is 
a prevalent specialty food and is also sought-after as a 
pet in this region. During sample collection, we found 
that some fishermen would engage in illegal fishing dur-
ing the closed season, and this illegal fishing would lead 

Table 5 Pairwise FST (above diagonal) and Ds (below diagonal) of P. sinensis 

*P < 0.05, **P < 0.01

PJ SL AS DL SY SH JN

PJ 0.0283** 0.0045 0.0250** 0.0521** 0.0407* 0.5805**

SL 0.0021 0.0079 0.0586** 0.0123 − 0.0029 0.4555**

AS 0.0011 0.0019 0.0208 0.0384* 0.0105 0.6124**

DL 0.0009 0.0017 0.0007 0.1317** 0.0790** 0.7052**

SY 0.0012 0.0019 0.0010 0.0008 0.0228 0.6277**

SH 0.0014 0.0021 0.0012 0.0010 0.0013 0.5790**

JN 0.0026 0.0034 0.0024 0.0021 0.0026 0.0027

A

B

 AS
 DL
 SY
 PJ
 SH
 SL
 JN

0.00000.00020.00040.00060.00080.00100.0012

 SL

 SY

 SH

 PJ

 AS

 DL

 JN

0.0002

Fig. 4 UPGMA (A) and NJ (B) clustering of P. sinensis populations 
based on the mitochondrial COI gene
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to a sharp decline in the population size, resulting in a 
decrease in genetic diversity. Overharvesting can drive 
the decline of genetic diversity [1, 24, 27, 34], which is 
closely related to the long-term adaptability and surviv-
ability of populations. Low genetic diversity can affect 
the fitness [6] and the ability of individuals to survive 
and adapt to future environments [27, 34]. Therefore, 
the unnecessary cross-basin introduction should be 
avoided to preserve the local genetic resources. Moreo-
ver, in addition to fishing restrictions, the population 
size of low genetic diversity populations can be recov-
ered by releasing shrimp from adjacent populations.

Genetic variation
Based on the outcome of AMOVA, the genetic dif-
ferentiation within populations of P. sinensis, which 
accounted for 73.07% of the total genetic variation, was 
much higher than that among populations. Moreover, 
according to the maximum variation among groups 
(FCT) determined by SAMOVA, analysis of molecular 
variance using the optimal two-group scheme (JN and 
the other populations) indicated that the highest vari-
ations were found among groups (53.36%). Similarly, 
both the pairwise Ds and FST values revealed that the 
JN population was genetically different from the other 
populations. According to the criterion made by Thorp 
[30], the pairwise Ds values between pairs of P. sinen-
sis populations ranged between 0.0007 and 0.0034, 
indicated that they were closely populations (Ds < 0.2). 
In contrast, the pairwise FST values among the other 
six populations were low or moderate [2]. The low or 
moderate differences between the pairwise FST values 
of the six populations indicated that they might share 
the same ancestors, and the haplotype analysis results 
also supported this conclusion. This was likely because 
the samples in the present study were collected from 
two geographical areas. Specifically, the JN population 
belonged to the Huaihe River Drainage in East China, 
whereas the other six populations inhabit the Liaohe 
River Basin and Related River Drainage in Northeast 
China. Therefore, the divergence between the JN popu-
lation and the other six populations is due to the long-
term geographical separation of their ancestors, which 
is consistent with our previous study using microsatel-
lite markers [37]. Nevertheless, although no apparent 
geographic division was found based on genealogic 
reconstructions (Fig.  2) and the haplotypes of the JN 
population were distinct from those of the other pop-
ulations, no distinct branches were observed in the 
Fig. 2. This may be because the estimated time of popu-
lation expansion (16,000 to 106,000 years ago) was too 
short to form geographically unique clade [7].

Historical demographics
Neutrality tests (Tajima’D and Fu’s Fs) and mismatch 
distribution analysis were performed to understand the 
demographic dynamics of seven P. sinensis populations. 
Both mismatch distribution analysis and significant nega-
tive values of neutrality tests indicated a pattern of recent 
population expansion in most populations. The insignifi-
cant values of PSSD and PRag (P > 0.05) did not reject the 
hypothesis of the population growth in all seven popula-
tions. Moreover, the extremely significant negative values 
in the majority of Fu’s Fs statistics in populations DL, PJ, 
SL, SY, and JN also confirmed the expansions of these five 
populations despite the negative but non-significant Fu’s 
Fs value in population AS and SH.

The demographic history was reflected in the genetic 
indices of this species, which showed low nucleotide 
diversity (π < 0.005) and higher haplotype diversity 
(Hd > 0.5) (Table 2). As described by Grant et al. [14], high 
Hd and low π values can be attributed to rapid population 
expansion after a period of low effective population size, 
which enhances the retention of new mutations. This 
is consistent with the large number of unique and low-
frequency haplotypes found in the present study (Addi-
tional file  1: Table  S1). This is also consistent with the 
negative Tajima’s D value observed in our study, which 
was probably due to the population expansion caused 
by larger scale breeding after a sharp decline in popu-
lation size [17]. Additionally, low diversity parameters 
(Hd < 0.5, π < 0.005) were identified in the DL, PJ, AS and 
JN populations, indicating that they may have recently 
experienced a bottleneck or founder effect produced by 
minority populations [14]. The genetic purity of these 
populations was not suitable for further selective breed-
ing as a base population. Therefore, in situ conservation 
and the introduction of individuals from adjacent popu-
lations is critical in order to improve genetic diversity and 
reduce diversity decline as a result of inbreeding [14, 17].

Conclusions
The genetic variability of seven P. sinensis populations 
was assessed based on partial sequences of the COI 
gene. The results of AMOVA showed highly significant 
differences within populations. Forty-one haplotypes 
were detected among the populations, and the haplo-
type network indicated that haplotype Hap_1 might 
be the maternal ancestral haplotype for the studied P. 
sinensis populations. Neutrality and mismatch distribu-
tion tests suggested that P. sinensis underwent recent 
population expansion. The result of SAMOVA analy-
sis, haplotype network analysis, Ds, and FST among 
pairs of populations suggested that the JN population 
was distinctive from the other six populations, which 
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was due to long-term geographic separation. Overall, 
our results provide important insights for the develop-
ment of genetic resource management strategies and 
enable a better understanding of the ecology and evolu-
tion of this species. Lastly, we propose several strate-
gies for future P. sinensis genetic germplasm protection 
and aquaculture. First, illegal fishing should be strictly 
limited during the closed fishing season to avoid reduc-
tions in P. sinensis population size. Second, the DL, PJ, 
AS and JN populations were not suitable for further 
selective breeding as a base population, which high-
lights the need for in  situ conservation efforts. More-
over, populations with low genetic diversity can be 
recovered by releasing shrimp from adjacent popula-
tions, and unnecessary cross-basin introduction should 
be avoided to preserve the local genetic resources.
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