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Abstract 

Background: There has always been controversy over whether clonal plants have lower genetic diversity than plants 
that reproduce sexually. These conflicts could be attributed to the fact that few studies have taken into account the 
mating system of sexually reproducing plants and their phylogenetic distance. Moreover, most clonal plants in these 
previous studies regularly produce sexual progeny. Here, we describe a study examining the levels of genetic diversity 
and differentiation within and between local populations of fully clonal Zingiber zerumbet at a microgeographical 
scale and compare the results with data for the closely related selfing Z. corallinum and outcrossing Z. nudicarpum. 
Such studies could disentangle the phylogenetic and sexually reproducing effect on genetic variation of clonal plants, 
and thus contribute to an improved understanding in the clonally reproducing effects on genetic diversity and popu‑
lation structure.

Results: The results revealed that the level of local population genetic diversity of clonal Z. zerumbet was compara‑
ble to that of outcrossing Z. nudicarpum and significantly higher than that of selfing Z. corallinum. However, the level 
of microgeographic genetic diversity of clonal Z. zerumbet is comparable to that of selfing Z. corallinum and even 
slightly higher than that of outcrossing Z. nudicarpum. The genetic differentiation among local populations of clonal Z. 
zerumbet was significantly lower than that of selfing Z. corallinum, but higher than that of outcrossing Z. nudicarpum. 
A stronger spatial genetic structure appeared within local populations of Z. zerumbet compared with selfing Z. coral-
linum and outcrossing Z. nudicarpum.

Conclusions: Our study shows that fully clonal plants are able not only to maintain a high level of within‑population 
genetic diversity like outcrossing plants, but can also maintain a high level of microgeographic genetic diversity like 
selfing plant species, probably due to the accumulation of somatic mutations and absence of a capacity for sexual 
reproduction. We suggest that conservation strategies for the genetic diversity of clonal and selfing plant species 
should be focused on the protection of all habitat types, especially fragments within ecosystems, while maintenance 
of large populations is a key to enhance the genetic diversity of outcrossing species.
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Background
For most vascular plant species, there are two distinct 
modes of reproduction: sexual and asexual, through 
vegetative reproduction and apomixis [1, 2]. For plants 
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reproducing asexually, vegetative reproduction is 
extremely common in perennial plants [1, 3]. The two 
modes of reproduction are accompanied by contrasting 
genetic consequences [2, 4, 5]. Understanding the effects 
on genetic diversity of the means of reproduction used 
by plants could provide significant insights into their 
evolutionary biology and conservation, and thus this has 
attracted extensive concern and research interest [6].

Plants that employ sexual reproduction can achieve 
gene exchange between individuals and populations via 
pollen and seed, while plants relying solely on vegeta-
tive reproduction are generally not readily dispersed far 
from the parent plant [4, 7–9]. Thus, for plants repro-
ducing sexually, there is opportunity for the addition of 
new genotypes via gene flow and/or genetic recombina-
tion [10]. For plants reproducing asexually, in contrast, it 
is predicted that genetic variation will reduce as a result 
of the absence of segregation and genetic recombination 
[11–13], as evidenced by various studies on genetic varia-
tion in clonal plants [14, 15]. In contrast to the theoretical 
predictions, many empirical studies on genetic variation 
of clonal plants, however, have shown that their popula-
tion genetic diversity, on average, is generally similar to, 
or even higher than that of sexually reproducing plants 
[11, 16–20]. This has led to the widely accepted idea that 
average genetic variation in populations of clonal plants 
generally appears as diverse as that of non-clonal plants 
[18, 21, 22]. In fact, the maintenance of within-popula-
tion genetic diversity of clonally reproducing species 
should take into account several facts, e.g. the recruit-
ment of new genotypes through sexually produced dia-
spores, diversifying selection in different environmental 
conditions and somatic mutation [11, 16, 17]. The most 
common reason behind a high level of genetic diversity in 
populations of many clonal plants with a capacity for sex-
ual reproduction is the sporadic and limited episodes of 
sexual reproduction [13, 18, 23–30]. For example, asexu-
ally reproducing populations of the shrub Acacia carneo-
rum contained multiple genets, which can be attributed 
to occasional sexual recruitment [13], and perennial 
clonal herbaceous Maianthemum bifolium showed high 
genotypic diversity resulting from very limited sexual 
recruitment [18]. However, these previous studies did not 
take into account the mating system of the non-clonal 
plants concerned, which is the most important factor 
affecting genetic diversity and spatial genetic structure of 
populations within species [31–33]; that is, a comparison 
was not made with selfing and outcrossing plants. For 
example, Meloni et al. [34] did not consider the breeding 
system when comparing the genetic diversity of clonal 
species and sexually reproducing species in the Canary 
Islands. Moreover, it is worth noting that most clonal 
plants in these previous studies regularly produce sexual 

progeny. Numerous studies on genetic variation have 
shown that, compared to outcrossing plants, self-fertiliz-
ing plants have less genetic diversity at both the popula-
tion and species levels, but genetic differentiation among 
populations is strengthened [35, 36]. Therefore, given the 
influences of mating system on genetic diversity, it can be 
difficult to fully understand the impact of clonal repro-
duction on genetic variation and spatial genetic structure 
of populations of clonal plants regularly producing sexual 
progeny, because its roots lie in a complex mixture of fac-
tors. Undoubtedly, studies comparing obligatory clonal 
plants with selfing and outcrossing plants are needed 
and could contribute to an improved understanding of 
the effect of clonal reproduction on population genetic 
diversity and spatial genetic structure of plants. In addi-
tion, the value of previous studies for analysis of clonal 
reproduction effects on genetic diversity is reduced by 
lack of consideration of phylogeny. Phylogenetic rela-
tionships between the species in focus may confound the 
comparative analyses of genetic diversity between unre-
lated asexual and sexual plant species [31, 37], as phylo-
genetically related species may exhibit combinations of 
character values that are inherited to some degree from 
a common ancestor [38]. Given this, comparative studies 
of closely related taxa have the advantage of being able to 
better isolate the effects of variation in single traits (e. g. 
modes of reproduction) on genetic structure [31]. There-
fore, comparative studies on population genetic structure 
between closely related obligatory clonal plant species 
and sexual plant species can disentangle the phylogenetic 
effect on genetic variation.

In this study, we focus on a fully clonal plant species 
from China, Zingiber zerumbet (L.) Smith, which is a 
perennial herb species of section Zingiber of the genus 
Zingiber, closely related to selfing Z. corallinum and out-
crossing Z. nudicarpum (Additional file  1: Fig. S1) [39, 
40]. All of the three Zingiber plants are highly ornamental 
and can be used medicinally [39–42]. Our previous stud-
ies comparing the genetic structure of the two closely 
related selfing and outcrossing Zingiber species at land-
scape level [43] and fine scale level [44] have shown that 
selfing Z. corallinum can maintain a high level of genetic 
diversity at both geographic scales, similar to that of out-
crossing Z. nudicarpum, albeit with low genetic diversity 
within populations or subpopulations. Here, therefore, 
we assess the levels of genetic variation and differentia-
tion within and among local populations of fully clonal 
Zingiber zerumbet at a microgeographic scale using 
ISSR markers, and compare the results with those for 
the two closely related species, selfing Z. corallinum and 
outcrossing Z. nudicarpum. The genetic variation and 
structure of plant populations can reveal useful infor-
mation about, and is regarded as the strategic mainstay 
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of, biodiversity and the diversity of a species within and 
among wild populations inhabiting an ecosystem [45, 46]. 
Thus, an increased understanding of genetic diversity and 
genetic structure in species found in habitats is key to 
the development of conservation strategies for small and 
isolated populations [47, 48]. In this study, we focus on 
the following questions. (1) Is the genetic diversity lower 
in clonal Zingiber species than in selfing and outcross-
ing Zingiber, as theory predicts? (2) Are there differences 

in the spatial genetic structure among Zingiber popu-
lations at microgeographic scales related to mode of 
reproduction?

Results
ISSR polymorphism, genetic diversity and clonal diversity
The ISSR polymorphism, genetic diversity and clonal 
diversity data are summarized in Tables  1 and 2. The 
primers produced 293 reliable ISSR bands from four local 
populations of Z. zerumbet across Dongshui Mountain, 
of which 250 (85.32%) were polymorphic, there were 38 
specific bands (12.97%). At the microgeographic level, the 
values of Nei’s gene diversity (h) and Shannon’s genetic 
diversity index (I) were 0.2409 and 0.3713, respectively. 
At the local population level, the values of h and I ranged 
from 0.1140 to 0.1971 (average 0.1448) and from 0.1695 
to 0.2955 (average 0.2157), respectively. The 12 selected 
primers identified 205 genotypes from 229 individu-
als, and 199 (86.9%) of those were unique. The number 
of genotypes (G) per local population ranged from 24 at 
MLH to 105 at HJC (average 51.3), and the number of 
unique genotypes ranged from 24 at MLH and DS1 to 
104 at HJC (average 49.8). Simpson’s diversity index (D) 
was 1.00 for all individuals at microgeographic level, and 
ranged from 0.90 to 1.00 (average 0.97) at local popula-
tion level.

The patterns of allele frequency are shown in Fig. 1. 
Among all local populations except HJC, common 
loci (i.e. found in all individuals within local popu-
lations: allele frequency = 100%) accounted for the 
highest proportion (49.78%–55.19%) of amplified 

Table 1 Attributes of ISSR primers of Zingiber zerumbet used in 
the present study

*B = (C, G, T), D = (A, G, T), R = (A, T), V = (A, C, G), Y = (C, G), H = (A, C, T)

Tm annealing temperature, SR size range of amplified fragments, NT total 
number of bands, NP number of polymorphic bands

Primer Sequence 5´ to 3´ Tm (°C) SR (bp) NT NP

810 (GA)8 T 44 220–2350 22 13

811 (GA)8 T 52 230–2050 22 20

817 (CA)8A 56 270–1750 21 20

826 (AC)8C 56 230–1800 27 21

834 (AG)8Y*T 46 320–2100 23 23

841 (GA)8Y*C 56 180–1850 24 24

847 (CA)8R*C 59 180–2200 38 35

857 (AC)8Y*G 48.5 180–1950 24 19

884 HBH*(AG)7 52.5 220–1850 23 20

887 DVD*(TC)7 52 370–1950 22 20

888 BDB*(CA)7 56 270–2050 21 13

889 DBD*(AC)7 59 270–1850 26 22

Total – – 180–2350 293 250

Table 2 Comparison of genetic diversity and clonal diversity parameters based on ISSR for local populations of Zingiber zerumbet 
at the microgeographic scale with that of selfing Z. corallinum and outcrossing Z. nudicarpum. (The data of Z. corallinum and Z. 
nudicarpum utilized in this study are from Huang et al. [44].)

G number of genotypes, S number of genotypes found only once, G/N the number of genotypes (G) relative to that of samples (N), D Simpson’s diversity index, PL 
number of polymorphic loci, PPL percentage of polymorphic loci, Na number of observed alleles, Ne number of effective alleles, h Nei’s gene diversity, I Shannon’s 
information index, NS number of specific bands

Local population Sample size G S G/N D PL PPL (%) Na Ne h I NS

Z. zerumbet

 DS1 45 26 24 0.58 0.90 95 32.42 1.3242 1.1972 0.1140 0.1695 7

 DS2 54 50 47 0.93 0.99 116 39.59 1.3959 1.2258 0.1342 0.2024 5

 MLH 24 24 24 1.00 1.00 102 34.81 1.3481 1.2402 0.1340 0.1955 5

 HJC 106 105 104 0.99 1.00 174 59.39 1.5653 1.3399 0.1971 0.2955 21

 Average 57 51.3 49.8 0.90 0.97 122 41.55 1.4084 1.2508 0.1448 0.2157 9.5

 Total 229 205 199 0.90 1.00 250 85.32 1.8532 1.3952 0.2409 0.3713 38

Z. corallinum

 Average 33 38 20.30 1.2028 1.1129 0.0662 0.0995 11.3

 Total 115 157 84.20 1.7655 1.4245 0.2490 0.3753 39.5

Z. nudicarpum

 Average 34 119 52.60 1.5256 1.2421 0.1464 0.2257 5

 Total 86 194 83.80 1.8384 1.3768 0.2246 0.3480 12.5
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fragments, followed by low-medium allele frequency 
loci (5% < allele frequency ≤ 50%) (18.87%–24.66%) 
and medium–high allele frequency loci (50% < allele 
frequency < 100%) (17.04%–23.81%). However, com-
mon loci, medium–high allele frequency loci and low-
medium allele frequency loci accounted for a similar 
proportion of amplified fragments in HJC, i.e. 30.12% 
and 30.12% and 30.92%, respectively. Rare loci (allele 
frequency ≤ 5%) accounted for the lowest proportion 
(3.14%–8.84%) of amplified fragments in all four sub-
populations. At the microgeographic level, both com-
mon loci (i.e. found in all local populations within the 
microgeographic area: allele frequency = 100%) and 
rare loci were less prevalent, i.e. 12.32% and 13.03%, 
respectively. However, medium–high allele frequency 
loci accounted for the highest proportion (47.18%) 
of amplified fragments, followed by the low-medium 
allele frequency loci (27.46%).

Genetic differentiation and gene flow 
at the microgeographic scale
The genetic differentiation statistics for all subpopu-
lations are presented in Table  3. The Nei’s GST values 
for the local populations of Z. zerumbet at the micro-
geographic scale were estimated as 0.4008, which 
indicates that 59.92% of the genetic variability was dis-
tributed within local populations. The estimate of gene 
flow (Nm) per generation among the local populations 
was 0.7476. The AMOVA analysis was consistent with 
the Nei’s genetic differentiation statistics, showing that 
46.0% (ΦST = 0.460) of the total variation was parti-
tioned among local populations of Z. zerumbet at the 
microgeographic scale (Table  4). That is, of the total 
molecular variance, 54.0% was attributable to individ-
ual differences in Z. zerumbet.

Genetic structure and cluster analysis 
at the microgeographic scale
Bayesian genetic analyses performed with STRU CTU RE 
revealed that with the log likelihood reached its maxi-
mum value at K = 2, when all individuals from four local 
populations of Z. zerumbet could be assigned to two 
genetic clusters (Fig.  2). Except for population MLH, 
almost all individuals within each local population were 
assigned to the same genetic clusters. The local popula-
tions DS1, DS2 and MLH were assigned to the same clus-
ter and HJC was assigned to a second cluster. In MLH, 
there was a high degree of admixing of two gene pools.

The UPGMA dendrogram (Fig. 3a) based on the Dice 
coefficient was broadly consistent with the unrooted 
neighbor-joining (NJ) tree (Fig.  3b) based on Nei’s 
genetic distance in local populations of Z. zerumbet at 
the microgeographic scale. All individuals from the same 
local populations were clustered together with the excep-
tion of three individuals from MLH when using an arith-
metic average analysis. The 229 individuals were first 
grouped into two clusters (I, II) and then cluster I formed 
three further well-resolved clades (A, B and C) compris-
ing all individuals from local populations DS1, MLH and 
DS2, respectively (Fig. 3). Cluster II consisted of clade D 
only, which comprised all individuals from HJC. Except 
for seven individuals, all the neighboring individuals 
within local populations clustered together (Fig.  3a, b). 
The PCoA broadly confirmed the partitioning results of 
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Fig. 1 Distribution of allele frequency in local populations of Zingiber 
zerumbet within the microgeographic area

Table 3 Comparison of genetic differentiation statistics 
between local populations of clonal Zingiber zerumbet at the 
microgeographic scale with that of selfing Z. corallinum and 
outcrossing Z. nudicarpum. (The data of Z. corallinum and Z. 
nudicarpum utilized in this study are from Huang et al. [44].)

HT total microgeographic diversity, HS average within local population diversity, 
GST local population differentiation, Nm gene flow

Local populations HT HS GST Nm

Z. zerumbet

 DS1 vs MLH 0.1815 0.1242 0.3158 1.0831

 DS1 vs DS2 0.1892 0.1243 0.3427 0.9588

 DS1 vs HJC 0.2312 0.1557 0.3264 1.0319

 MLH vs DS2 0.1701 0.1341 0.2117 1.8623

 MLH vs HJC 0.2178 0.1655 0.2401 1.5823

 DS2 vs HJC 0.2197 0.1657 0.2459 1.5337

 Average 0.2016 0.1449 0.2804 1.3420

 Total 0.2299 0.1405 0.4008 0.7476

Z. corallinum

 Average 0.1920 0.0622 0.6782 0.3060

 Total 0.2484 0.0721 0.7110 0.2575

Z. nudicarpum

 Average 0.2013 0.1449 0.2680 1.6596

 Total 0.2269 0.1474 0.3408 1.0311
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the UPGMA and NJ clustering (Fig. 4b). The Mantel Test 
revealed that there was no significant isolation-by-dis-
tance relationship across local populations of Z. zerum-
bet at the microgeographic scale (r = 0.420, p = 0.297) 
(Fig. 5).

The spatial autocorrelation analysis indicated that sig-
nificant positive spatial genetic structure was detected at 
2–14  m (r = 0.268 ± 0.125, p < 0.05) within local popula-
tions of Z. zerumbet (Fig. 6).

Discussion
Is the genetic diversity of a clonal Zingiber species lower 
or higher than that of sexual Zingiber species?
Genetic uniformity could be expected within populations 
of strictly clonal species [25]. Contrary to theoretical pre-
dictions, some comparative studies on genetic variation 
between unrelated clonal and sexual plants species have 
shown that the genetic variation of the former is compa-
rable to that of the latter [18, 21, 22]. Nevertheless, there 
are a few studies comparing genetic diversity in popula-
tions between closely related clonal plants and non-clonal 

or less clonal ones (e. g. Typha angustifolia and T. lati-
folia [49]; Gagea lutea and G. spathacea [50]), showing 
lower levels of genetic diversity in populations of clonal 
plants. The present study revealed that the level of local 
population genetic diversity in clonal Z. zerumbet was 
comparable to that in closely related outcrossing Z. nudi-
carpum (h: 0.1448 vs 0.1464, p = 0.95; I: 0.2157 vs 0.2257, 
p = 0.79) and significantly higher than that in closely 
related selfing Z. corallinum (h: 0.1448 vs 0.0662, p = 0.05; 
I: 0.2157 vs 0.0995, p = 0.05). However, the level of micro-
geographic genetic diversity of clonal Z. zerumbet is 
comparable to that of selfing Z. corallinum (h: 0.2409 
vs 0.2490, p = 0.587; I: 0.3713 vs 0.3753, p = 0.838), and 
even slightly higher than that of outcrossing Z. nudicar-
pum (h: 0.2409 vs 0.2246, p = 0.389; I: 0.3713 vs 0.3480, 
p = 0.493). These results suggest that, compared with 
outcrossing Z. nudicarpum, the genetic diversity of local 
populations of clonal Z. zerumbet at the microgeographic 
scale will be less affected by reduced gene flow because 
each individual contains most of the genetic variation 
within the population, similar to selfing Z. corallinum 
[44]. In addition, the clonal diversity of Z. zerumbet at the 
microgeographic scale was also relatively high, with most 
of the sampled plants representing unique genotypes 
(199 genets out of 229 sampled). The observed values 
of clonal diversity of Z. zerumbet (G/N = 0.90; D = 0.97) 
were higher than the average values of clonal plant spe-
cies in several literature surveys (e.g. G/N = 0.17, D = 0.67 
for 21 clonal species summarized by Ellstrand and Roose 
[16]; G/N = 0.27; D = 0.75 for 45 clonal species reported 
by Widén et  al. [17]; G/N = 0.44; D = 0.85 for 77 clonal 
species reported by Honnay and Jacquemyn [19]). This 
may be because these previous reviews of clonal diversity 
included taxa with various levels of sexual reproduction. 
It indicates that obligatory clonal plant species may have 

Table 4 Comparison of summary of analysis of molecular variance (AMOVA) for local populations of clonal Zingiber zerumbet at the 
microgeographic scale with that of selfing Z. corallinum and outcrossing Z. nudicarpum. (The data of Z. corallinum and Z. nudicarpum 
utilized in this study are from Huang et al. [44])

df degrees of freedom, ФST between local populations deviations from Hardy–Weinberg expectations, p the probability of accepting the null hypothesis

Subpopulation Source df Sums of squares Mean squares Variance 
component

Percentage of 
variation (%)

ФST p

Z. zerumbet

Between local populations 3 2647.505 882.502 16.613 46.0 0.460 0.001

Within local populations 225 4387.936 19.502 19.502 54.0

Z. corallinum

Between local populations 6 23.942 78.4 0.784 0.001

Within local populations 224 12.152 21.6

Z. nudicarpum

Between local populations 4 19.451 46.8 0.468 0.001

Within local populations 168 17.172 53.2

DS1 DS2 MLH HJC
Fig. 2 Genetic‑group‑structure shown by STRU CTU RE analysis for 
local populations of Zingiber zerumbet within the microgeographic 
area. Each individual vertical bar represents an individual and the 
black vertical bars separate the local populations, while different 
colors represent different gene pools
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higher clonal diversity than other clonal species with var-
ious levels of sexual reproduction. We suggest that fully 
clonal plant species (such as Z. zerumbet) are able not 
only to maintain a high level of within-population genetic 
diversity as outcrossing plant species (such as Z. nudi-
carpum), but can also harbor as high a level of microgeo-
graphic genetic diversity as selfing plant species (such as 
Z. corallinum), albeit by adopting diverse strategies.

Unlike outcrossing plant species, obligatory clonal 
plant species, like selfing ones, cannot maintain high 
genetic diversity within/among populations through 
frequent exchange of genes [51]. However, with-
out migration among demes of local populations 

Fig. 4 Comparison of scatterplot of the principal coordinate analysis (PCoA) based on ISSR polymorphisms for individuals in local populations of 
clonal Zingiber zerumbet within the microgeographic area with that of selfing Z. corallinum and outcrossing Z. nudicarpum. Different colors represent 
individuals from different local populations. (a minimum, maximum, and mean distance between sampled populations of the three Zingiber 
species, b Z. zerumbet, c, d Z. corallinum, e, f Z. nudicarpum; the figures of Z. corallinum and Z. nudicarpum utilized in this study are from Huang et al. 
[44])
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(subpopulations) at microgeographic scales (metap-
opulations) of fully clonal or selfing plant species, any 
mutation that arises in local populations (subpopula-
tions) may be fixed and cannot spread to other local 
populations (subpopulations). This is confirmed by the 
lowest proportion of common loci and the higher pro-
portion of low-medium loci at the microgeographic 
level in clonal Z. zerumbet (12.32% vs 27.46%) and 
selfing Z. corallinum (6.8% vs 43.2%) [44]. Compared 
to selfing plant species, obligatory clonal plant spe-
cies should become more heterozygous for a particu-
lar allele in an individual small population fragment 
because of the absence of a capacity for sexual repro-
duction, thus resulting in a higher heterozygosity. Fur-
thermore, independent ramets can prove advantageous 
to reduce the likelihood of the death of a genet, and 
consequently protecting against loss of genetic varia-
tion [3, 17]. This was confirmed by our results, in which 
the proportion of common loci within local populations 
of clonal Z. zerumbet was marginally lower than that 
of selfing Z. corallinum (47.34% vs 67.62%, p = 0.079) 
and comparable to that of outcrossing Z. nudicarpum 
(47.34% vs 37.73%, p = 0.187). Moreover, 53.33%–
100% of the sampled individuals within local popula-
tions of Z. zerumbet were unique, which may suggest 
that individuals have diverged with regard to geno-
typic composition. This may be attributed to random 

genetic mutations resulting from single-base changes 
or transposon activation, leading to the accumula-
tion of somaclonal variation in clonal propagation [20, 
34, 37, 52, 53]. Thus, the fully clonal plant Z. zerum-
bet may increase genetic variation within populations 
by the accumulation of random somatic mutations, as 
found in some cloned plants [3, 26, 34, 54]. Numerous 
studies have also shown that per-generation mutation 
rates in plants that reproduce vegetatively are generally 
expected to be higher than non-clonal plants as result 
of a growing number of somatic mutations [2, 55, 56]. 
In addition, clonal plants can be specialized for varying 
environmental conditions [10, 56, 57]. Habitats with 
contrasting environments have long been known to 
promote the co-existence of locally adapted genotypes 
through diversifying selection [17, 57, 58], thus result-
ing in high levels of genetic diversity [17, 27]. In this 
case, ecological differences between local populations 
at the microgeographic scale may also have contributed 
to the maintenance of genetic diversity of Z. zerumbet. 
The population-specific bands detected in every local 
population of Z. zerumbet at the microgeographic scale 
also imply that local populations may diverge due to 
different environmental conditions.

Based on the above, we suggest that conservation strat-
egies for the genetic diversity of clonal plants, like those 
for selfing species, should be focused on the protection of 
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all habitat types, especially isolated fragments within eco-
systems, while maintenance of large populations is a key 
to enhancing genetic diversity for outcrossing species.

Are the differences in the population genetic structure 
of Zingiber species at microgeographic scales related 
to mode of reproduction?
Compared to outcrossing species, fully clonal plants, like 
selfing plants, theoretically have lower genetic diversity 
within populations and higher differentiation between 
populations [59, 60], since pollen migration between 
populations is rare or absent in clonal and selfing plants, 
and a specific locus arising in an individual population 
cannot spread to other populations [35, 61]. However, 
the genetic differentiation between local populations 
(subpopulations) of clonal Z. zerumbet was significantly 
lower than that of selfing Z. corallinum (Gst = 0.4008 vs 
0.7110, p = 0.00) and higher than that of outcrossing Z. 
nudicarpum (Gst = 0.4008 vs 0.3408, p = 0.486) in this 
study. AMOVA analysis also showed that more variation 
was found within local populations of clonal Z. zerumbet 
(54.0%) and outcrossing Z. nudicarpum (53.2%) at micro-
geographic scales, but the opposite was true for selfing Z. 
corallinum (21.6%). Unlike outcrossing Z. nudicarpum, 
clonal Z. zerumbet obviously cannot counter genetic dif-
ferentiation between local populations through gene flow 
[62], due to absence of migration of pollen and seeds 
within /among local populations at the microgeographic 
scale. However, prolonged clonal growth may buffer the 
effect of genetic drift, leading to reducing genetic differ-
entiation between populations, as a result of the persis-
tence of clonal propagation [9, 18]. This is the case for 
clonal Z. zerumbet in our study. Furthermore, there is 
no inbreeding depression that could lead to increasing 
genetic differentiation among populations in fully clonal 
plants. Thus, we suggest that the fully clonal plants may 
have higher genetic diversity within populations and 
lower differentiation among populations compared to 
selfing plants, similar to that of outcrossing plants, albeit 
as a result of different strategies.

Compared with outcrossing species, selfing species 
always tend to show a stronger spatial genetic structure, 
due to lack of gene flow via pollen [63, 64], which is evi-
denced by the result of comparison between selfing Z. 
corallinum and outcrossing Z. nudicarpum [44]. High 
levels of clonal clustering are always present in plants 
that reproduce by vegetative propagation, due to limited 
dispersal ability [2, 8, 65, 66], which is confirmed by the 
results of our cluster analysis, showing that neighboring 
individuals within local populations of clonal Z. zerum-
bet always cluster together at the microgeographic scale, 
similar to selfing Z. corallinum (Additional file  1: Figs. 
S2, S3) [44]. However, many individuals do not aggregate 

with their neighbors within subpopulations (local popu-
lations) in outcrossing Z. nudicarpum (Additional file 1: 
Figs. S4, S5) [44]. Moreover, there is an absence of migra-
tion of pollen and seeds within /among local populations 
of fully clonal plants. Thus, fully clonal plants should 
generate a stronger spatial genetic structure than plants 
employing sexual reproduction [2, 65]. Our result is 
consistent with this hypothesis, as evidenced by the sig-
nificant positive spatial genetic structure at a smaller 
spatial scale (2–14  m) compared with selfing Z. coral-
linum (2–34  m) and outcrossing Z. nudicarpum (500–
1500  m) [44]. For clonal Z. zerumbet, this is the logical 
consequence, because the dispersal distances of vegeta-
tive propagules in Z. zerumbet are expected to be shorter 
than those of pollen and seed in sefling Z. corallinum and 
especially in outcrossing Z. nudicarpum.

Conclusions
In the present study, our results revealed that, contrary 
to theoretical predictions, fully clonal Zingiber zerumbet 
is able not only to maintain as high a level of within-pop-
ulation genetic diversity as outcrossing Z. nudicarpum, 
but can also harbor as high a level of microgeographic 
genetic diversity as selfing Z. corallinum, probably due 
to the accumulation of somatic mutations and absence of 
a capacity for sexual reproduction. There are differences 
in the spatial genetic structure of Zingiber populations 
at microgeographic scales and these are related to mode 
of reproduction. The present study advances our under-
standing of the effect of the means of reproduction used 
by plants on population genetic diversity and genetic 
structure.

Methods
Study species, study sites and sample collection
Zingiber zerumbet (L.) Smith is diploid perennial herb 
with hermaphrodite flowers, like selfing Z. corallinum 
and outcrossing Z. nudicarpum, and is widespread in 
moist places in forests, distributed across tropical regions 
such as south China, Cambodia, India, Laos, Malaysia, 
Myanmar, Sri Lanka, Thailand and Vietnam [39, 40]. 
However, during our 15 years (2005–2020) of fieldwork, 
no fruiting has been observed in any natural populations 
of Z. zerumbet in China, and thus it is considered to be 
sterile, reproducing vegetatively through rhizome elonga-
tion [67]. This can be confirmed by the absence of seed 
set after hand pollination [41, 42]. In this study, we sam-
pled all local populations within an area of ca. 3 × 6  km2 
across Dongshui Mountain (village) in Yangxi County 
(GDYX—21° 47′ 28″ N, 111° 25′ 43″ E, alt. 215–272  m) 
(Fig.  7), Guangdong Province, China, in order to exam-
ine the microgeographic genetic variation and genetic 
structure of clonal Z. zerumbet. The species has spatially 
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structured populations with four local populations in 
different habitats naturally isolated by ca. 830–6900  m 
(average 4500  m) of agricultural land, village, mountain 
forest, or stream. The individuals grow in open bamboo 
forest land near a village (HJC), on abandoned farmland 
(DS1) and margins of remnant forest (DS2) and alongside 
a stream (MLH).

In order to analyze within-population spatial genetic 
structure, we collected samples from 24 to 106 individu-
als throughout the full spatial extent of each local popu-
lation (Table  2). Spatial distances between neighboring 
samples that appeared unconnected to each other were 
at least 2 m to minimize the risk of resampling the same 
clone. The straight-line distance between individuals was 
also estimated directly on the basis of the site coordinates 
to calculate the spatial autocorrelation coefficient (r) 
within local populations. Leaf tissue samples were stored 
in silica gel prior to DNA analysis. Voucher specimen was 
collected (voucher number: wyq-14-45) for Z. zerumbet 
and deposited at the herbarium of South China Normal 
University (SN). The species was identified by professor 
Ying-Qiang Wang from School of Life Sciences, South 
China Normal University. Permissions were not neces-
sary for collecting these samples, because they do not 
grow in nature reserves or included in the list of national 
key protected plants. Our field works and molecular 
experiments complied with local legislation, national and 
international guidelines. We also abide by the Conven-
tion on the Trade in Endangered Species of Wild Fauna 
and Flora.

DNA extraction and PCR
Total genomic DNA from the sampled leaves was 
extracted using a modified CTAB method [68]. The 
quality and quantity of DNA were assessed using 0.8% 
agarose gel electrophoresis and a spectrophotometer. 
ISSR-PCR amplifications were performed on a BIO-
RAD T100 thermal cycler with an initial denaturation for 
5 min at 95 °C, followed by 39 cycles of denaturation for 
45  s at 94  °C, annealing for 45  s and extension for 90  s 
at 72 °C, with a final extension for 10 min at 72 °C. Ten 
primers that have been used previously in Z. corallinum 
and Z. nudicarpum [43, 44] were used for Z. zerumbet, 
together with an additional two primers for this spe-
cies (Table 1). PCR was carried out in a total volume of 
20 μL, including 40 ng template DNA, 2.0 μL 10× buffer, 
1.50 mmol  Mg2+, 0.15 mmol dNTPs, 0.8 μmol primer, 2.0 
units of Taq DNA polymerase and double-distilled water. 
To test for possible contamination, negative controls, in 
which template DNA was replaced with distilled water, 
were included in each PCR set. The amplification prod-
ucts were subjected to electrophoresis on 1.8% agarose 
gels in 0.5 × TBE buffer at 130 V for 1–1.5 h along with 
a 100 bp ladder, and photographed using a gel documen-
tation system (Bio-Rad GelDoc  XR+). To ensure repeat-
ability of the results, duplicate PCR amplifications were 
performed and only clear and reproducible bands were 
scored and used in the final analysis. The images of the 
gels were analyzed using Image Lab software (Bio-Rad) to 
score for the presence (1) or absence (0) of bands and to 
assign a fragment size to each band using an algorithm 

Fig. 7 Location of the microgeographic area (GDYX) and distribution of local populations of Zingiber zerumbet within GDYX. Each dot represents a 
sampled individual. The map was drawn by the authors with reference to Google Maps. The map can be found at https:// maps. google. com/

https://maps.google.com/
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based on the 100 bp ladder. The presence or absence of 
bands was further confirmed by eye. A binary matrix of 
the ISSR phenotypes was built based on the presence or 
absence of bands. The binary matrix of the ISSR pheno-
types was stored in the figShare repository (https:// doi. 
org/ 10. 6084/ m9. figsh are. 14593 941).

Data analysis
Analysis of genetic diversity, clonal diversity, differentiation 
and gene flow
The binary matrix was used to calculate the genetic 
diversity parameters at local population and microgeo-
graphic level using POPGENE v. 1.32 [69]. These param-
eters were as follows: percentage of polymorphic loci 
(PPL), observed number of alleles (Na), effective number 
of alleles (Ne), Nei’s gene diversity (h), and Shannon’s 
information index (I). Samples with similarities above 
0.98 were considered to be identical and to belong to the 
same genotype [70]. Two measures of clonal diversity for 
each local population were used in our study as follows: 
(1) The “proportion distinguishable” (G/N ratio), which 
was defined as the number of genotypes (G) divided by 
the number of samples (N) [16]; (2) Simpson’s diversity 
index (D), which was defined as 1-∑[ni(ni − 1)/N(N − 
1)], where ni is the number of samples of genotype i and 
N is the total number of samples collected for that local 
population [71]. GST, an indicator of the degree of differ-
entiation between local populations, was calculated using 
POPGENE. To assess the values of population genetic 
differentiation (Φ) and the proportion of total variation 
among and within local populations, the matrix was also 
subjected to an analysis of molecular variance (AMOVA) 
implemented in GenAlEx 6.502 [72] based on 999 per-
mutations. Gene flow (Nm) between local populations 
was calculated as Nm = 0.5(1 − GST)/GST [73].

Analysis of genetic structure
STRU CTU RE v. 2.1 [74] was used to derive the number 
of genetic units and to assign an individual to K genetic 
clusters. We performed five runs for each value of k, with 
a run length of 1,000,000 Markov chain Monte Carlo 
(MCMC) replications after a burn-in period of 100,000. 
In order to illustrate the genetic relationship between 
individuals, a dendrogram was constructed using an 
unweighted paired group method with an arithmetic 
average analysis (UPGMA) based on the Dice coeffi-
cient in NTSYSpc-2.10 [75]. A neighbor-joining (NJ) tree 
was also generated in MEGA v. 7 [76] from the genetic 
distances matrix [77]. Principal Coordinates Analysis 
(PCoA) using GenAlEx provided a visual representation 
of the genetic relationships within and between local 
populations of Z. zerumbet. Mantel tests implemented 
in GenAlEx were performed to examine whether genetic 

distances between local populations were related to the 
corresponding measures of geographic distance.

Spatial genetic structure (SGS) within local populations
To investigate genetic relatedness of individuals with 
respect to spatial position within local populations, sin-
gle population spatial structure analyses were performed 
to assess the spatial genetic structure of the studied local 
populations using GenAlEx. To reduce noisy confidence 
limits in case of uneven sampling, even sample classes 
were chosen [72]. The autocorrelation coefficient (r) cal-
culated according to Smouse and Peakall [78] is similar 
to Moran’s-I, ranging from -1 to 1. To test the statistical 
significance of the spatial autocorrelation values, a clas-
sic two-tailed 95% confidence interval (CI) was generated 
and bootstrap resampling was performed 999 times.
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