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Abstract
Background: We report an analysis of a protein network of functionally linked proteins, identified
from a phylogenetic statistical analysis of complete eukaryotic genomes. Phylogenetic methods
identify pairs of proteins that co-evolve on a phylogenetic tree, and have been shown to have a high
probability of correctly identifying known functional links.

Results: The eukaryotic correlated evolution network we derive displays the familiar power law
scaling of connectivity. We introduce the use of explicit phylogenetic methods to reconstruct the
ancestral presence or absence of proteins at the interior nodes of a phylogeny of eukaryote species.
We find that the connectivity distribution of proteins at the point they arise on the tree and join
the network follows a power law, as does the connectivity distribution of proteins at the time they
are lost from the network. Proteins resident in the network acquire connections over time, but
we find no evidence that 'preferential attachment' – the phenomenon of newly acquired
connections in the network being more likely to be made to proteins with large numbers of
connections – influences the network structure. We derive a 'variable rate of attachment' model
in which proteins vary in their propensity to form network interactions independently of how many
connections they have or of the total number of connections in the network, and show how this
model can produce apparent power-law scaling without preferential attachment.

Conclusion: A few simple rules can explain the topological structure and evolutionary changes to
protein-interaction networks: most change is concentrated in satellite proteins of low connectivity
and small phenotypic effect, and proteins differ in their propensity to form attachments. Given
these rules of assembly, power law scaled networks naturally emerge from simple principles of
selection, yielding protein interaction networks that retain a high-degree of robustness on short
time scales and evolvability on longer evolutionary time scales.

Background
Protein interaction networks can be thought of as the phe-
notypes of sets of functionally linked genes. Organismal

phenotypes emerge from the interactions among these
network phenotypes and the processes they define. In this
light, protein interaction networks hold out a promise of
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developing a network-based view of development, and of
integrating proteomics into systems biology.

The defining feature of a network is the set of the links it
describes among a group of interactors or nodes. The
degree or connectivity k of a node in the network is the
number of other nodes to which it connects. One of the
chief ways to characterize a network is to record the
number of connections each node makes, and plot its dis-
tribution. If the nodes in the network make connections
to each other at random and with a fixed probability, then
a statistically homogenous structure arises in which the
probability that a node is connected to k other nodes is
proportional to p(k) = e-λk, where λ describes the rate at
which the probability of forming an additional attach-
ment declines with k. As the description implies, in a
homogenously scaled network, nodes on average connect
to a similar number of other nodes ≈ 1/λ. A curious fea-
ture of many naturally occurring networks is that they sys-
tematically depart from random connectivity, p(k) instead
being described by the relationship p(k) ∝ k-λ, where again
λ is a characteristic of the network. Networks with this
form of connectivity distribution are described as scale-
free or power-law scaled. They differ from exponential
networks in having a broad or 'fat' tail – that is, the
number of nodes with a large number of connections is
more than expected under a random attachment model.

Figure 1 illustrates exponential and power-law scaled rela-
tionships. Networks with power-law connectivity are
inhomogeneous, their structure being dominated by a
number of 'satellite' nodes each with a small number of
connections, and a few 'hub' nodes with very large degrees
of connectivity. Their description as 'scale-free' arises from
the fact that, when measured on logarithmic axes, power-
law scaled networks show a linear relationship, over a very
wide range of connectivity, between the frequency of
nodes with connectivity k and k itself. Power-law scaling
has been documented for social networks [1], disease
transmission networks [2], the distribution of links to
World Wide Web pages [3], and even for citations to sci-
entific papers [4]. In biology, protein interaction and met-
abolic networks also typically follow power-law scaling
[5,6].

Scale-free topology does not emerge from the fixed-prob-
ability random attachment process and so various authors
(e.g. [7]) have proposed a non-random attachment mech-
anism known as 'preferential attachment' or 'rich get
richer' as a model for the growth of power-law scaled net-
works. Preferential attachment refers to a mechanism in
which new interactions in a network are more likely to be
made with nodes that already have a large number of con-
nections. Scale-free networks emerge under preferential
attachment if the probability of a new attachment being

made to node i in a growing network is proportional to ki/
k where ki is the number of existing connections to node i,
and k is the total number of connections in the network.

Preferential attachment is a plausible mechanism for
many kinds of network. In a social network, for example,
a gregarious individual (high degree of connectivity) is
more likely to be known to new individuals entering the
network. For the same reasons, a new web page is more
likely to link to well-known web pages, and highly cited
papers are disproportionately likely to attract more cita-
tions. It is less clear how preferential attachment might
arise in biological networks of proteins, requiring a pro-
tein to become more acquisitive of attachments the more
it has.

One non-random mechanism by which networks grow is
gene-duplication. When a gene duplicates the duplicated
gene is assumed to acquire the original gene's connec-
tions, thereby increasing the overall connectivity in the
network. Over time, duplicated genes tend to diverge and
most of the original connections are lost. Simulation stud-
ies [8] suggest that gene-duplication followed by evolu-
tion of gene connectivity can lead to power-law scaling in
networks. However Wagner [6] analysed the connectivity
patterns of actual gene duplicates, and found that too
many of the duplicated genes' connections are lost to
influence the structure of the network. Instead, Wagner [6]
reports phenomenological evidence among pairs of paral-
ogous genes consistent with preferential attachment.

Do power-law scaled networks arise because of some
selective advantage they confer or do they emerge from
other more fundamental processes? Power-law scaled net-
works are more resistant to random loss of nodes than
homogeneously connected networks [9], because most
nodes have few connections, the majority of nodes being
connected to one another via a small number of highly
connected hub nodes. Owing to their small numbers, hub
nodes are not likely to be affected by random removal
(perhaps corresponding to a mutational loss in a biologi-
cal network) and thus the topology of the network is rela-
tively unchanged by random loss of nodes. By
comparison, random removal of nodes in a homogene-
ously connected network has larger effects. This robust-
ness of scale-free networks to random loss may translate
into phenotypic stability in biological networks. On the
other hand, Wagner [6] argues that power-law scaling sim-
ply emerges naturally from 'local rules', these rules being
that there is a continual turnover of connections and
nodes within networks over time, and that new connec-
tions are formed according to the principle of 'preferential
attachment'.
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Protein networks are evolving systems, meaning that
questions about how they form and change over time can
be studied directly on phylogenies. Recently we developed
an approach for detecting pairs of functionally linked pro-
teins from their pattern of co-evolution on a phylogenetic
tree [10]. The method identifies independent instances of
the evolutionary gain or loss of pairs of proteins. Applying
the method to a data set of known functional links in the
yeast [11], Barker and Pagel [10] identified 609 pairs of
proteins that co-evolved in a sample of fifteen fully-
sequenced eukaryotes, and a further 278 known function-
ally linked pairs that were found in every one of the fifteen
species. The correlated gain/loss method substantially
improved upon the conventional method of 'phyloge-
netic profiling' that merely seeks a correlation in the pres-
ence or absence of pairs of genes among a set of species
(e.g. [12]).

Here we study questions about how protein networks
evolve, using the 887 pairs of proteins we identified in our
earlier study [10] as being functionally linked. The protein

pairs can be used to infer a 'correlated evolution network'
comprising 1774 pair wise functional links. We have
information on the presence and absence in the sample of
eukaryote species of the individual proteins that comprise
the correlated evolution network. By applying phyloge-
netic methods of ancestral state reconstruction, we can
reconstruct the probable points of origin on the eukaryote
phylogeny of the various proteins. We can then ask at each
node of the phylogeny what set of genes was present, and
use this information to determine how many of the other
proteins that a given protein is linked to were also present
when that protein joined the network. Similarly we can
calculate how many connections are removed when a pro-
tein is lost from the network. This allows us to build up a
picture of where in the network – in the hubs or in the less
connected proteins – most of the evolutionary turnover
takes place. We can test directly for evidence that genes
'burrow in' to networks over time by acquiring additional
attachments, and whether the patterns of acquisition of
links conform to preferential attachment as the network
evolves. Taken together, the patterns of gain and loss of

Exponential and power-law curvesFigure 1
Exponential and power-law curves. Illustration of exponential and power-law curves, showing how power-law generates a 
larger number of highly connected nodes. Two network diagrams illustrate hypothetical differences in network connectivity 
expected for random (exponential) and scale-free networks.
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proteins and their attachments, and the nature or topol-
ogy of the attachments describes a set of 'rules of assem-
bly' for evolving protein networks, and it is these that we
wish to identify here.

Results
Phylogenetic tree
Figure 2 displays the phylogenetic tree for the fifteen spe-
cies we included in this study (tree drawn after [10]). The
sample is biased towards yeast and fungal pathogens, rep-
resenting the fully sequenced and well annotated eukary-
otic genomes available at the time of our earlier study
[10].

The network and its scaling
We used the 469 proteins and the 887 pairwise functional
links Barker and Pagel [10] identified in their sample of
fifteen eukaryotes to investigate the correlated evolution
network (Methods, data available from MP). The network
defines 887 edges or 1774 connections and is drawn in
Figure 3. The left panel records the proportion of yeast
proteins in the MIPS database [11] assigned to various
functional categories (blue bars) and for comparison the
proportion in the same functional categories as found in
our sample of 469 proteins. The two sets of proportions
are highly correlated (r = 0.95, p < 0.0001) although there
are differences among some categories (χ2 = 33.80, 10 df,
p < 0.001). More generally, there are few proteins associ-

Phylogenetic tree of eukaryote speciesFigure 2
Phylogenetic tree of eukaryote species. Phylogenetic tree of fifteen eukaryote species used in this study (after Barker and 
Pagel, [10]). Dark blue dots illustrate hypothetical instances of a gene evolving and its protein entering the network; light blue 
dots illustrate instances of a gene and its protein being lost from the network.
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ated with metabolism, energy, or cell fate, reflecting MIPS'
emphasis on identifying actual physical protein com-
plexes.

The average connectivity for a protein is 3.78 ± 4.47
(mean ± standard deviation) connections to other pro-
teins. However, the network connectivity distribution is
highly skewed (right panel) such that approximately 60%
of the proteins have a connectivity of 1 or 2. The distribu-
tion is well characterized by a power-law, as has been
reported for the yeast protein-interaction network (e.g.
[6,11,13]). The fitted power-law relationship estimates λ
to be 1.6 and predicts 98% of the variance in connectivity
frequencies.

Gains and Losses
Figure 2 illustrates how we can identify positions on the
tree where a protein is gained and where it might later be
lost. These ancestral state reconstructions provide a way to
study turnover in the protein network. At the point a pro-
tein is gained, we calculate how many other proteins it is
linked to that were also present in the network at that
time. This is a protein's connectivity upon joining the net-
work. A similar analysis calculates the connectivity of pro-
tein when it is lost from the network.

Figure 4 displays the connectivity distribution for proteins
when they were gained (left panel) and for when they
were lost (right panel) from the network. We identified
295 proteins present at the root of the tree, leaving 174
gained somewhere throughout the phylogeny. The 295
ancestral proteins have an average connectivity of 4.67 ±
5.26, accounting for 1379 links. The 174 acquired pro-
teins account for 395 new connections or 1.91 ± 1.77 con-
nections per protein upon entering the network. This is
substantially lower than the average connectivity for the
295 ancestral proteins, suggesting that proteins that have
been in the network for longer have more connections,
possibly because they acquire connections over time. The
connectivity distribution for gained proteins follows a
power-law (r2 = 0.95) and its exponent is somewhat
steeper than that for the overall network.

Of the 469 proteins in the network, 239 were lost in at
least one of the branches of the tree, with a mean of 3.54
± 2.37 losses per protein or 847 losses in total. The average
connectivity of proteins when lost from the network was
5.21 ± 6.48, higher than that for gained proteins, although
the median connectivity is two. Fifty-nine of the 847
losses involved proteins that at the time of the loss had a
connectivity of zero. The connectivity distribution for pro-
teins with k > 0 when they are lost from the network is
power-law scaled although with a shallower exponent

Protein functional categories and protein networkFigure 3
Protein functional categories and protein network. Left panel. A comparison of the proportion of yeast genes (from 
MIPS database) in various functional categories and the 469 genes in the eukaryotic correlated evolution network. The two 
sets of proportions are highly correlated (r = 0.95), but proportions do differ (χ2 = 33.8, p < 0.001). Right panel. The correlated 
evolution network describing 1774 A<=>B connections among the 469 genes, and its connectivity distribution well described 
by a power-law (r2 = 0.98).
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than that for gains or for the network as a whole, and the
long flat tail of the distribution shows why the average
connectivity of lost genes is high.

Figure 4 shows that turnover in the protein-interaction
network is dominated by proteins of low connectivity:
112 of the 174 new proteins (64%) had just one or two
connections upon joining the network, and 53% (450/
847) of the loss events from the network involved pro-
teins with connectivities of 1 or 2.

Preferential attachment
Preferential attachment predicts that genes with a larger
number of links will acquire a greater proportion of the
new links over time as the network evolves. We can test
this directly from the ancestral presence/absence data. We
recorded the connectivity of each of the 295 proteins
reconstructed as present at the base of the tree, and then
compared this to the number of links these proteins have
in S. cerevisiae. Because all of the proteins in our data are
present in S. cerevisiae, this path through the tree gives the
greatest opportunity to detect preferential attachment.
The left panel of Figure 5 plots the final connectivity ver-
sus the initial connectivity for these 295 proteins. The
points all fall on or above the 1:1 line showing that the
proteins all acquired links over the time this path through
the eukaryote tree represents. Of the 295 proteins, 240 did
not acquire any new connections. The remaining 55 pro-
teins acquired 74 connections or a mean of 1.35 ± 0.58

connections per protein. The age of the animal/fungi
divergence is controversial (see for example, [14]). How-
ever, adopting an age of approximately 1.5 × 109 years
[15], the 74 newly acquired connections translates to
approximately 1.6 × 10-4 new connections per protein (n
= 295) per million years, comparable to Wagner's [6] esti-
mate of 5.9 × 10-4 based on paralogous genes. The right
panel of Figure 5 plots each protein's net number of
gained links (final-initial) against its initial links. The
greatest number of newly acquired connections occurred
among the proteins with the fewest to start with – the
opposite of that predicted by preferential attachment. The
line shows the regression of gains onto initial connectivity
(slope = 0.018), which although statistically significant,
accounts for approximately 3% of the variation in newly
acquired connections.

We conducted several simulation studies of an evolving
network following Barabasi and Albert's [1] and Wagner's
[6] model of preferential attachment, to determine
whether the degree of preferential attachment we observe
in Figure 5 could influence network structure. The prefer-
ential attachment model assumes that p(new attachment)

∝ , and generates power-law scaling in a growing

network. We modified the preferential attachment rule to
conform to the regression in Figure 5, making p(new

k

k
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Connectivity distributions for gains and losses of proteinsFigure 4
Connectivity distributions for gains and losses of proteins. Left panel: The connectivity distribution for genes at the 
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nections in the network (mean = 1.91 ± 1.77). Curve accounts for 95% of the variance in connectivity frequencies. Right panel: 
The connectivity distribution of genes at the time they were lost from the network. Curve accounts for 89% of the variance in 
frequencies. Based upon 239 genes comprising 847 losses or 3.54 ± 2.37 losses per protein (a protein can be lost in more than 
one place on the tree).
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attachment) = (0.17 + 0.018 ). This consistently

returned randomly scaled (exponential) networks
because the 0.17 intercept term dominates the probability
of attachment.

A variable rate of attachment model
A biologically plausible alternative to preferential attach-
ment is to allow different proteins to have different fixed
rates of attachment or 'stickiness'. We assume that this
fixed rate of attachment influences the number of connec-
tions a protein makes when it enters the network and its
likelihood of forming new connections. The variable rate
of attachment model differs from the preferential attach-
ment model in that the probability of forming a new
attachment is independent of the number of current
attachments a protein has or of the number of total net-
work attachments. To motivate the model, let the proba-
bility that a protein forms k new links with other proteins
be given by p(k) ∝ e-λk, where λ specifies the instantaneous
rate of attachment. Applied to all proteins in a network,
this is the random attachment model that returns homog-
enous network connectivity. However, consider that λ
may vary from protein to protein such that some proteins
are more and some are less likely to form links. This may
be related to a protein's structure or to its function. Let λ

have some probability density given by f(λ), then we can
define the integral

The integral defines a new function p(k) describing the
probability distribution of connectivity k, allowing for the
rate of attachment to vary among proteins. Let f(λ) follow
a gamma distribution such that

The gamma distribution is a very general probability den-
sity allowing for shapes ranging from an exponential
(when β = 1) through to normal-like distributions
depending upon the values of α and β.

Solving this integral yields

p(k) = (1 + αk)-β.

This equation for p(k) describes the connectivity distribu-
tion under a variable rate of attachment model. We fit this
equation to the data of Figure 6, by choosing the values of
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α and β that minimized the sum of squared errors
between the predicted and observed frequencies for each
level of connectivity, k. This yields a curve (Figure 6)
remarkably similar to that obtained from the power-law.
The variable-rates model accounts for 99% of the variance
in the connectivity frequencies, compared to 98% of the
variance for the power-law curve.

Fitting the curve to the data yields estimates of α = 0.38
and β = 3.02. The inset to Figure 6 gives the shape of the
estimated probability density f(λ) as given by these
parameters. It is a right-skewed distribution with an
expected mean value of αβ = 1.15 and an expected stand-
ard deviation of αβ1/2 = 0.66. The interpretation is that
most proteins have a low to medium rate of attachment
but a few have high rates of attachment. By comparison,
the simple power-law model fixes λ at 1.6.

The power-law and variable rate of attachment curves' fit
to the connectivity frequencies can be compared by means
of an F-test of their residual variances. Both curves require
two parameters, a proportionality constant and an expo-
nent for the power-law curve, and α and β for the variable-
rates curve. The degrees of freedom for both residual vari-
ance estimates is therefore 20 (n-k-1), where n = 23 is the
number of connectivity classes, and k = 2 is the number of
parameters. This yields an F-ratio of F20,20 = 1.31, p ≈ 0.25.

Discussion
We have studied a protein-interaction network based on
pairs of proteins that have co-evolved in a sample of
eukaryotic species. This eukaryotic 'correlated evolution'
network differs from single species studies in identifying
what might be a conserved set of eukaryote functional
links. By reconstructing their presence or absence on a

The variable rate of attachment modelFigure 6
The variable rate of attachment model. Fit of the variable rate of attachment model (see text) fitted to the overall con-
nectivity distribution of Figure 3 (right panel), accounting for 99% of the variance and illustrating that power-law scaling can 
emerge if proteins have different fixed propensities for forming attachments. Inset shows the predicted frequency distribution 
of attachment rates (α = 0.38, β = 3.02) under the variable rate of attachment model: most genes cluster around a low rate of 
attachment but a few show high rates of attachment, producing the 'hub' nodes in the network.
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phylogeny of the eukaryotes we have been able to study
how the network evolves.

We find that the correlated evolution network, like the
interaction networks of single species has scale-free topol-
ogy. Turnover in the interaction network is dominated by
proteins of low connectivity: both newly acquired pro-
teins and proteins lost from the network have power-law
scaled connectivity distributions, meaning that most pro-
teins that are gained or lost are connected to only a small
number of other proteins. If connectivity in the protein
interaction network is related to a protein's effect on the
organism (e.g. [16-18]), then turnover in protein interac-
tion networks may predominantly involve the so-called
'dispensable genes' [19] – those whose loss have only a
negligible or even no measurable effect on the organism.

The biologist R.A. Fisher suggested in the 1930's [20] that
genes would tend to evolve to have small effects. Fisher's
argument was that if organisms occupy unimodal fitness
landscapes, then small changes would be more likely than
large ones to move them closer to the peak of the fitness
distribution. Protein-interaction networks provide a mod-
ern perspective and a natural structure in which to inter-
pret these suggestions. Fisher's genes of small effect may
manifest themselves in the protein interaction network as
genes of low connectivity. It is these that can be readily
gained and lost owing to their small effects on the pheno-
type and fitness. About 80% of genes may be 'dispensable'
[19], a number that is startling at first glance, but in fact
expected if scale-free networks are the norm, and connec-
tivity is related to effect size as supposed. We find, for
example, that around 65% of the proteins gained or lost
from the network had connectivities of two or less.

We did not find empirical support for the preferential
attachment model (Figure 5) widely used to explain how
power-law scaling arises [7]. If our results prove general,
we suggest that the power-law curve, although providing
a useful description of the data should not be assumed to
confirm the model of preferential attachment. The varia-
ble-rates-of-attachment model we proposed in place of
preferential attachment can also explain the typical 'fat-
tailed' shape of the connectivity distribution of biological
networks. It does so without invoking the requirement
that a protein's propensity for acquiring attachments
increases with the number of attachments it already has,
and decreases as the number of attachments in the net-
work rises ('preferential attachment'). Rather, the variable
rates of attachment model asserts that some proteins
intrinsically form attachments at higher rates than others,
independently of their number of current attachments
and of network connectivity as a whole. Even though this
model fits the data only marginally better than a power-

law curve, we prefer it on grounds of biological plausibil-
ity.

It may be difficult to distinguish the two models in prac-
tice. In a growing network, the variable-rate model would
predict that proteins with more attachments might be
more likely to acquire new attachments by virtue of hav-
ing an intrinsically higher rate of forming such attach-
ments. This is subtly different from preferential
attachment but we suggest that the difference is biologi-
cally important. Thus, the variable rate of attachment
model suggests that it should be possible to find and iden-
tify the features of proteins that determine their rates of
attachment. For example, the proteins with high predicted
rates of attachment under the variable rates model are
expected to be the hub proteins in networks. The distribu-
tion of attachment rates predicts that there will be a rela-
tively small number of these, and this is what is observed.
By comparison, the peripheral proteins that form few
attachments are predicted to have lower intrinsic attach-
ment rates.

Whether scale-free networks are directly selected for being
evolvable, error tolerant or robust, or whether the scale-
free topology emerges out of more fundamental processes
remains an open question. Fisher's principle of genes
evolving to have small effects combined with the variable
rate of attachment model suggests that scale-free topology
naturally emerges from just two simple rules of assembly:
proteins differ in their inherent capacity to form attach-
ments to other proteins, and proteins with small effects
will tend to be gained and lost more readily. There is no
need to posit preferential attachment rules or selection for
the scale-free topology.

Nevertheless scale-free networks and their rules of assem-
bly may give insight into one of the key problems of devel-
opment: how reliably to produce a complex phenotype in
an unpredictable environment. In real time, organisms
must develop and then maintain a highly complex pheno-
type, far more complex for example than computers, large
buildings, or even the Space Shuttle – objects whose com-
plexity in human terms makes them prone to sometimes
catastrophic breakdown. Organisms must be able to
achieve a stable phenotype reliably and repeatedly despite
unpredictable environmental conditions. Selection may
even act more strongly on variance-stabilizing mecha-
nisms in development than on the mean value of traits
[21]. Scale-free networks may have the relative independ-
ence from input conditions that has been observed in real
biological systems (e.g. [22]), and which may be necessary
to achieve a stable phenotype. Selection acting among var-
iants of interaction networks (such as among the individ-
uals in a population) may favour network structures that
confer real-time stability [23,24]. This sort of robustness,
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arising from the topology of the network, in turn may
confer evolvability on organisms over evolutionary time
because the same network characteristics that make it pos-
sible to overcome environmental fluctuations in real time,
give the organism an advantage in adapting at the genetic
level to semi-permanent changes to the environment or to
the demands of occupying a new niche.

This view along with the structure and phenotypic charac-
teristics of protein-interaction networks invites specula-
tion about fundamental questions regarding the origin
and evolution of phenotypic diversity. Loosely, one can
divide phenotypic diversity into two classes. In one,
organisms are largely shape-transformations of one
another, differing in size and life history but not in gross
aspects of morphology and development. Many family-
level clades may fit this description. The other class con-
trasts organisms that differ in important details of the
body plan, such as fish and mammals. The question for a
systems and network-based science of development is
whether the evolutionary mechanisms underlying this
variation differ qualitatively or quantitatively. That is, do
typical family level differences arise from a gradual proc-
ess of the accumulation of many changes of small effect,
corresponding to the dominant turnover we observe in
the protein interaction network? In contrast, do larger
developmental differences arise from more rapid and
almost saltationary changes corresponding to the infre-
quent, but nonetheless observed, acquisition or loss of a
highly connected or hub proteins in the network? What
might be caricatured as the 'Hox gene school of develop-
ment' might favour the latter interpretation, whereas a
more gradualist view would favour the former for both
kinds of difference at the phenotypic level. This is a funda-
mental and as yet uninvestigated feature of development
that can be studied with methods such as we have used
here. The answers promise to integrate our understanding
of development and the phenotype with the growing
fields of proteomics and systems biology.

Conclusion
A few simple rules can explain the topological structure
and evolutionary changes to protein-interaction net-
works: most change is concentrated in satellite proteins of
low connectivity and small phenotypic effect, and pro-
teins differ in their propensity to form attachments. Given
these rules of assembly, power law scaled networks natu-
rally emerge from simple principles of selection, yielding
protein interaction networks that retain a high-degree of
robustness on short time scales and evolvability on longer
evolutionary time scales.

Methods
Phylogenetic inference
The tree was inferred from EF1-α and EF2 gene-sequences
obtained for the fifteen eukaryotic species in Figure 2
([10] for details, see [25]).

Gene presence/absence data
The Munich Information Centre for Protein Sequences
[26,27] database of protein complexes lists 260 known S.
cerevisiae protein complexes, the 1156 proteins that form
them, and the functional categories into which they can
be classified (including transcription, protein synthesis,
metabolism, and energy). The MIPS functional links have
been determined by low-throughput laboratory proce-
dures and therefore provide a reliable collection of func-
tional links in this species. Barker and Pagel [10]
identified the presence/absence of each of these proteins
in the fourteen other eukaryotic species, using a reciprocal
best-in-genome global alignment between proteins.

Identification of correlated functional links
Regarding each protein within a MIPS S. cerevisiae com-
plex as functionally linked to every other different protein,
Barker and Pagel [10] identified 5619 pairs of proteins
that could be studied for correlated evolution across spe-
cies. Correlated evolution is assessed using a procedure
that compares the log-likelihood of a continuous-time
Markov model of trait evolution in which the two proteins
evolve independently of each other on the phylogeny, to
that obtained when the two proteins' evolution is
described by a model in which their evolution is corre-
lated [10,28-30]. This procedure identified 609 or 11% of
pair wise links as being significantly correlated across spe-
cies.

In a further 278 pairs of proteins both members of the
pair are found in all fifteen species we studied. We con-
sider these pairs also to represent functional linkages as
they are annotated as functionally linked in S. cerevisiae
and have both been retained throughout the evolutionary
history of the eukaryotes. Combining these two sets gives
887 edges in the network or 1774 total connections. We
use this set here to construct the correlated evolution net-
work.

Ancestral state reconstruction
Four hundred and sixty nine proteins comprise the 1774
total links. For each of these proteins, we reconstructed its
probable first appearance on the tree, and then later losses
from the protein's pattern of presences and absences
among the species. Ancestral presence/absence was deter-
mined by the methods described in Pagel, Meade, and
Barker [25]. In particular, at each node of the tree we cal-
culate the probability that the protein was present. Pro-
teins are regarded as present at nodes when this
Page 10 of 11
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probability is greater than or equal to 90%. This corre-
sponds to a likelihood ratio in favour of the protein being
present of ~2, following the criteria outlined in Pagel [31].
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