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Abstract
Background: The nucleomorphs associated with secondary plastids of cryptomonads and
chlorarachniophytes are the sole examples of organelles with eukaryotic nuclear genomes.
Although not as widespread as their prokaryotic equivalents in mitochondria and plastids,
nucleomorph genomes share similarities in terms of reduction and compaction. They also differ in
several aspects, not least in that they encode proteins that target to the plastid, and so function in
a different compartment from that in which they are encoded.

Results: Here, we test whether the phylogenetically distinct nucleomorph genomes of the
cryptomonad, Guillardia theta, and the chlorarachniophyte, Bigelowiella natans, have experienced
similar evolutionary pressures during their transformation to reduced organelles. We compared
the evolutionary rates of genes from nuclear, nucleomorph, and plastid genomes, all of which
encode proteins that function in the same cellular compartment, the plastid, and are thus subject
to similar selection pressures. Furthermore, we investigated the divergence of nucleomorphs
within cryptomonads by comparing G. theta and Rhodomonas salina.

Conclusion: Chlorarachniophyte nucleomorph genes have accumulated errors at a faster rate
than other genomes within the same cell, regardless of the compartment where the gene product
functions. In contrast, most nucleomorph genes in cryptomonads have evolved faster than genes in
other genomes on average, but genes for plastid-targeted proteins are not overly divergent, and it
appears that cryptomonad nucleomorphs are not presently evolving rapidly and have therefore
stabilized. Overall, these analyses suggest that the forces at work in the two lineages are different,
despite the similarities between the structures of their genomes.

Background
While the primary acquisition of the plastid from a free-
living cyanobacterium is believed to have occurred only
once [1], plastids have continued to spread through
eukaryotes by means of secondary and tertiary endosym-
biosis. This is the process whereby a plastid-containing,
free-living eukaryote is consumed by another eukaryotic
cell and becomes an organelle itself. Primary plastids

(exemplified by those of plants) have two membranes,
while secondary plastids have additional membranes cor-
responding to the outer membrane of the engulfed
eukaryote and the phageosomal membrane of the host, as
well as the original membranes of the primary plastid
[2,3], although in some lineages membranes have subse-
quently been lost. The nucleus of the engulfed cell is, in all
but two described cases, absent, and the genes encoding
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plastid-targeted proteins having been relocated to the host
nucleus [4-6]. The exceptions are the cryptomonads and
chlorarachniophytes, which contain nucleomorphs, the
remnant nuclei of the plastid-containing algae that were
engulfed in the secondary endosymbioses that gave rise to
these lineages (Figure 1). The cryptomonad endosymbi-
ont is derived from a red alga, while that of chlorarachni-
ophytes is derived from a green alga. Their genomes
encode very few genes, and most of them are housekeep-
ing genes for replication, transcription and protein fold-
ing and degradation [7,8]. A handful of proteins related to
plastid function have also been retained, however, they
are relatively few [7,9,10]. The periplastidial space (equiv-
alent to the cytosol of the engulfed alga) itself has specific
metabolic processes, such as starch synthesis in crypto-
monads, but most of the proteins for these pathways are
missing from the nucleomorph genome [7] and are antic-
ipated to be found in the nuclear genome, as has been
shown for a few examples [11].

The nucleomorph is often thought of as an anomaly, a
rare occurrence, since it is known only in cryptomonads
and chlorarachniophytes, but if one considers 'loss or
gain' rather than 'presence or absence' then it is perhaps
not so anomalous. All lineages that are known to contain
secondary plastids (haptophytes, heterokonts, crypto-
monads, dinoflagellates, apicomplexans, euglenids and
chlorarachniophytes) have ancestors that contained a
nucleomorph. Depending on the number of secondary
endosymbiotic events that took place, which is still con-
tentious [3,12-14], the number of nucleomorph losses
and gains differs. The balance of molecular evidence
points to two events involving green algae [15,16] and
one involving a red alga [17-19]. With respect to green
algae this means one lineage lost its nucleomorph and
one retained it. With respect to red algae, this means a sin-
gle nucleomorph gain (if one accepts the chromalveolate
hypothesis [20]) and perhaps only one loss, if cryptomon-
ads are the deepest branch of chromalveolates, or perhaps
two if they diverged later. Overall, lineages retaining
nucleomorphs may be as common as lineages that lost
them, or at least the proportions are very similar. What-
ever the case, nucleomorphs existed in the common
ancestors of a great deal of algal diversity, so the study of
the lineages in which they remain may help us understand
the process of secondary (and higher order) endosymbi-
otic events, especially the reduction and subsequent loss
of the enslaved genome.

Cryptomonads and chlorarachniophytes arose from sepa-
rate endosymbiotic events, and neither host cell nor endo-
symbiont are very closely related. Yet the nucleomorph
genomes of the cryptomonad, Guillardia theta [7] and the
chlorarachniophyte, Bigelowiella natans [8-10] share sev-
eral characteristics. Both nucleomorph genomes have

Endosymbiotic events that gave rise to cryptomonads and chlorarachniophytesFigure 1
Endosymbiotic events that gave rise to cryptomonads and 
chlorarachniophytes.
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undergone substantial gene loss and are ultra-compact
compared to their free-living relatives in the red and green
algae. Some of these features, such as overlapping genes,
short intergenic regions, a reduction in elements like
transposons, and the presence of multigene transcripts
have been found in other compact eukaryotic genomes
such as microsporidia [21,22]. Compact genomes and
many of these features are common to endosymbionts in
general, however, until the sequences of the G. theta and
B. natans, nucleomorph genomes were completed, all
known endosymbiont genomes have been of prokaryotic
origin. The best examples of prokaryotic endosymbiont
genomes are those of the mitochondrion, once a free-liv-
ing alpha-proteobacterium, and the chloroplast, once a
free-living cyanobacterium [1]. Also well described,
although not organellar, are the bacterial endosymbionts
of insects, of these there are several complete genomes; for
example, Wolbachia [23-25], Buchnera [26], Wigglesworthia
[27] and Blochmania [28], the features of which have been
compared and defined [29-31]. These bacteria reside
within a range of diverse insects but, while they retain cer-
tain distinct genes that can be linked to the physiology of
their host, they show similar patterns of genome reduc-
tion, strong mutational AT bias and strict amino acid bias
at high expression genes [32]; an effect of selection against
mutation driven amino acid changes [31,33]. The AT
mutational pressure in endosymbionts, is sometimes very
extreme; estimated to be a remarkable 90% GC->AT in
Buchnera [34]. A universal AT mutational bias, has been
suggested because many types of spontaneous mutations
(e.g. the deamination of cytosine) cause GC to AT changes
[35]. The effects of this mutational bias may be more pro-
nounced and gene loss more rapid in small, endosymbi-
ont genomes because they are deficient in at least one
DNA repair mechanism, experience strong genetic drift
and have experienced a relaxation of selection in the intra-
cellular environment in comparison to free-living exist-
ence [31,33].

There is less chromosomal information for eukaryotic
obligate intracellular parasites, however certain alveolate
and microsporidian genomes show some similar charac-
teristics such as genome compaction [22], AT bias
[7,36,37], codon bias [38,39] and extreme divergence. A
summary of the features of organelle-, obligate-intracellu-
lar- and nucleomorph-genomes is given in Table 1. These
features are important to consider as measure of how unu-
sual, or not, nucleomorph genomes are.

With the recent availability of red algal [40] and green
algal [41] genomic data we are for the first time in a posi-
tion to do comparative genomics between nucleomorphs
of both cryptomonads and chlorarachniophytes and
examples of their free-living relatives, with the plant Ara-
bidopsis thaliana serving as an outgroup. Here we test

whether the phylogenetically distinct nucleomorph
genomes of G. theta and B. natans have experienced simi-
lar evolutionary pressures that influenced genome-wide
variation in predictable ways and with the same severity
and whether these effects are in common to those
described in other enslaved nuclei. Proteins from both
nucleomorph genomes have been observed to reside on
long branches of phylogenetic trees indicating that they
are poorly conserved [42-45], however this has never been
investigated at the genomic level. It is also assumed that
nucleomorph genes are highly derived because the pro-
teins function within a sub-cellular compartment, the
periplastidial space, where selection is relaxed due to
reduced interactions with other proteins. However, both
the G. theta and B. natans nucleomorphs encode proteins
that are directed to the plastid. Proteins that function in
the plastid are presumably subject to similar selection
pressures in organisms with nucleomorphs as they are in
other algae. We have therefore used plastid proteins
encoded in the plastid genome, the nucleomorph, or the
nucleus, to examine differences in rates of evolution in the
different genomes to determine whether the nucleo-
morph is evolving at a dissimilar rate to the plastid and
nuclear genomes. We also investigate the overall variabil-
ity of evolutionary rates of nucleomorph-encoded pro-
teins and their homologues in other species to determine
if the proteins still encoded within these genomes are gen-
erally well conserved, and whether this can shed light on
their retention in the nucleomorph. By comparing pro-
teins from the nucleomorph of two cryptomonads, G.
theta and Rhodomonas salina, we also investigate whether
cryptomonad nucleomorph genomes are diverging at the
same rate as their nuclear genomes.

Results and discussion
Plastid-encoded proteins are less divergent than nuclear-
encoded plastid-targeted proteins
The plastids of both G. theta and B. natans use proteins
encoded in the nuclear genome, the nucleomorph
genome and the plastid itself. Of the 147 proteins
encoded in the G. theta plastid genome [46] 45 are also
present in the plastid genomes of the red alga C. merolae
and the green plant A. thaliana. Of the 57 proteins
encoded in the B. natans plastid genome, 53 are also
present in the plastid genome of the green alga C. rein-
hardtii and A. thaliana. One of these proteins, YCF1
proved to be unalignable and was excluded from the anal-
ysis. Since the genomes of all plastids are descendents of
the cyanobacterial primary plastid ancestor, these pro-
teins are homologues (although some gene duplications
have occurred in certain plastid lineages).

The average distances, calculated by all methods (with or
without substitution matrices, see methods) between the
plastid-encoded proteins of G. theta, C. merolae and A.
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thaliana are smaller than the average distances between
the nuclear-encoded proteins (Figure 2a). The distance
from G. theta to A. thaliana and the distance from C. mero-
lae to A. thaliana is slightly greater than between the G.
theta and C. merolae, indicating that red and green plastids
are more distant than primary and secondary red plastids
(red, Figure 2a), however the difference is not substantial.
The average distances between plastid-encoded proteins
of B. natans, A. thaliana and C. reinhardtii, the plastids of
which are all of the green lineage, are also smaller than
nucleus-encoded proteins (Figure 2b). However, the three
plastids are roughly equidistant indicating that secondary
endosymbiosis did not affect the speed of divergence of
plastid genes in B. natans (red, Figure 2b).

Nuclear-encoded plastid genes have been transferred from
the plastid genome during endosymbiosis resulting in
reduced organelle genomes. Nucleus-encoded plastid-tar-
geted proteins of G. theta and B. natans [16,47] were iden-
tified from ongoing expressed sequence tag (EST)
sequencing projects (see methods) by similarity to known
plastid proteins and, where present, the characteristics of
targeting N-terminal presequences that direct these pro-
teins to their secondary plastid; a signal peptide flowed by
a transit peptide [48]. In G. theta transit peptides have the
characteristics of red algal transit peptides [49], and in B.
natans, of green algal transit peptides [47]. For each of
these proteins homologues were identified from the
nuclear genomes of A. thaliana and from the nuclear

genomes of C. merolae (for G. theta) or C. reinhardtii (for
B. natans). Twenty-four nucleus-encoded plastid-targeted
proteins were found in EST data from G. theta for which
there were identifiable homologues in C. merolae and A.
thaliana, and 45 plastid proteins were identified from B.
natans for which there were identifiable homologues from
C. reinhardtii and A. thaliana. A G. theta gene encoding an
isoform of glycogen (starch) synthase was excluded from
the analysis since starch is accumulated in the periplastid-
ial space in this species, but its homologue in C. merolae is
active in the cytosol and the its homologues in green algae
and plants are active in the plastid [50]. Also excluded
from the analysis was a nuclear copy of the tha4 gene also
found in the G. theta nucleomorph. The protein encoded
by this gene was longer than the nucleomorph protein,
which, in comparison to isoforms from other species
appears truncated. It is possible that the nuclear tha4 gene
is a recent transfer that has assumed the function of the
nucleomorph-encoded protein and that the truncated,
nucleomorph copy is in the process of being lost.

The average distances between nuclear-encoded plastid-
targeted proteins of G. theta, A. thaliana and C. merolae are
larger than the plastid-encoded proteins, and are almost
identical between the three species (blue, Figure 2a). Sim-
ilarly the average distances between nuclear-encoded plas-
tid-targeted proteins of B. natans, A. thaliana and C.
reinhardtii arealmost equal (blue, Figure 2b), but larger
than distances for plastid-encoded proteins from the same

Table 1: Features of endosymbiont and organelle genomes. '*' – no genome of free-living relative, '?' – not determined.

Organism Genome 
Compacted 
(compared to 

free-living relative)

AT bias Codon 
Bias

Expression bias 
(highly expressed 

genes are less 
divergent and GC 

rich)

Divergent 
(compared to 

free-living relative)

Organelle genomes of 
prokaryotic origin

Mitochondria Y Y Y Y Y

Plastids Y Y Y Y Y

Prokaryotic obligate 
intracellular symbionts

Wolbachia Y Y Y Y Y

Wigglesworthia Y Y Y Y Y
Buchnera Y Y Y Y Y

Organelle genomes of 
eukaryotic origin

Guillardia theta nm Y Y ? ? Y

Bigelowiella natans 
nm

Y Y ? ? Y

Eukaryotic obligate 
Intracellular parasites

Plasmodium -* Y Y Y -*

Toxoplasma -* Y ? ? -*
Cryptosporidium -* No ? ? -*

E. cuniculi Y No ? ? Y
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taxa. Distances calculated for both plastid and nuclear-
encoded proteins using the Dayhoff and VT substitution
matrices were larger than the average number of substitu-
tions (i.e. calculated without substitution matrix), which
shows that amino acids were most often substituted with
similar residues, suggesting functional conservation.

Overall, these analyses show that nucleus-encoded plas-
tid-targeted proteins are on average more divergent than
proteins encoded in the plastid genome. Two possible
causes for this observation are 1) the rates of general sub-
stitution are higher in nuclear genomes, or 2) the genes
retained in the plastid genome are those under the greatest
selection. A combination of both factors may occur. These
results for plastid-encoded and nucleus-encoded plastid-
targeted proteins are an important indication of the rela-

tive distances between the species for which the rates of
divergence of the nucleomorph genomes can be com-
pared.

Nucleomorph encoded, non-plastid proteins
Previous phylogenetic observations of nucleomorph-
encoded proteins, have led to speculation that the nucle-
omorph genomes are extraordinarily divergent, however
these studies have been made of proteins that do not tar-
get to the plastid. The nucleomorph genomes of G. theta
and B. natans each only encode a handful of plastid pro-
teins, and even fewer for periplastidial metabolism. The
rest of the genes encode proteins to support the nucleo-
morph; proteins for transcription, translation, protein
folding and degradation and RNA metabolism [7,8].
These proteins are active within this discrete and reduced

Radar graphs of average distance of plastid-, nucleus-, and nucleomorph-encoded plastid proteins, and nucleomorph-encoded non-plastid proteins of: (A) the cryptophyte G. theta (GT), the red algae C. merolae (CM) and the plant A. thaliana (AT); and (B) the chlororachniophyte B. natans (BN), the green algae C. reinhartii (CR) and A. thaliana (AT) without and with substitution matrices (Dayhoff, VT)Figure 2
Radar graphs of average distance of plastid-, nucleus-, and nucleomorph-encoded plastid proteins, and nucleomorph-encoded 
non-plastid proteins of: (A) the cryptophyte G. theta (GT), the red algae C. merolae (CM) and the plant A. thaliana (AT); and (B) 
the chlororachniophyte B. natans (BN), the green algae C. reinhartii (CR) and A. thaliana (AT) without and with substitution 
matrices (Dayhoff, VT). In each case the secondary endosymbiont-containing organism is compared to a free living example of 
its symbiont (red or green algae for A and B, respectively) and the plant A. thaliana as an outgroup. Note, scale is different for 
graphs either without or with substitution matrices.
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cellular space and do not interact with very many other
proteins, and therefore selection pressure is hypothesized
to be relaxed resulting in proteins of greater relative diver-
gence.

To test this, we selected nucleomorph-encoded genes for
proteins that function in the periplastidal space, and com-
pared the rates of evolution of these genes with homo-
logues from nuclear genomes (black, Figure 2a). Average
distances between nucleomorph-encoded proteins of G.
theta and nuclear-encoded homologues from A. thaliana
&C. merolae are larger than the distances between proteins
that are plastid-encoded in all species (red), whereas there
is less difference between these protein distances and
those of proteins that are nucleus-encoded in all species
(blue). However, significantly, the relative distances
between taxa are not equal. The distance to G. theta from
both A. thaliana and C. merolae is greater than the differ-
ence between A. thaliana and C. merolae (black, Figure 2a).
This is consistent with relaxed selective pressure for pro-
teins in the periplastidal space. This trend is even more
pronounced in the chlorarachniophyte. Average distances
between nucleomorph-encoded proteins of B. natans, and
nuclear-encoded homologues from A. thaliana &C. rein-
hardtii (black, Figure 2b) are larger than either plastid
(red) or nucleus-encoded plastid-targeted proteins (blue),
and the distances are also not equal. The distance to B.
natans from both A. thaliana and C. reinhardtii is much
greater than the difference between A. thaliana and C. rein-
hardtii (black, Figure 2b).

Overall, this confirms expectations that protein-coding
genes encoded and active in the nucleomorph and peri-
plastidal space are accumulating mutations faster than
nuclear or plastid-encoded proteins. By themselves, how-
ever, these observations do not allow us to distinguish
between rapid mutation rates in the nucleomorph
genomes as opposed to relaxed selective pressures on pro-
teins active within the periplastidal space.

The rate of divergence of nucleomorph-encoded plastid-
targeted proteins is restrained in cryptomonads but not in 
chlorarachniophytes
The nucleomorph of G. theta contains 19 genes that
encode plastid-targeted proteins of known function [7].
Of these, only two isoforms of Clp protease, and Cpn60
are also represented in the nucleomorph of B. natans, (the
other 16 genes are not common to B. natans), which con-
tains 14 further genes encoding proteins targeted to the
plastid [8].

Why these plastid-targeted proteins remain encoded in
the nucleomorph may be the key to the existence of the
genome itself, since almost all other nucleomorph-
encoded proteins are for self-maintenance and expression

of the genome. A variety of biological explanations have
been suggested for the retention of certain core proteins in
most chloroplast and mitochondrial genomes [51,52],
however, given that the nucleomorph is itself a remnant
nucleus none of these apply to nucleomorphs. It remains
a possibility that, despite there being almost no overlap in
plastid-protein content, these proteins are retained in
each genome for biological reasons specific to each sys-
tem, as hypothesized for core genes of the mitochondrial
and plastid genomes. Alternatively, they may be genes
that simply have not yet been successfully transferred to
the nucleus. Indeed, in this study we identified a nuclear
copy of a nucleomorph gene, tha4, which may have led to
the demise of the nucleomorph-encoded gene relatively
recently showing the ongoing nature of the process. By
extension, it is possible that only the few genes whose pro-
teins are more permissive to mutation can tolerate the
high mutation rate of nucleomorph genomes. Selection
pressure favouring the successful transfer of genes for pro-
teins under tighter selection for sequence conservation
would be stronger. This would suggest that the genes for
plastid-targeted proteins remaining in the nucleomorphs
would be divergent compared with homologues in other
eukaryotes, perhaps as divergent as other nucleomorph
proteins on average.

To test these hypotheses, we first compared the relative
distances of nucleomorph-encoded plastid-targeted pro-
teins to nucleus-encoded plastid-targeted and plastid-
encoded proteins (Figure 2). Fifteen nucleomorph-
encoded plastid-targeted proteins of G. theta had identifi-
able homologues in the nuclear genomes of C. merolae
and A. thaliana and 17 nucleomorph-encoded plastid-tar-
geted proteins of B. natans had identifiable homologues
in the nuclear genomes of C. reinhardtii and A. thaliana.

Average distances between nucleomorph-encoded plas-
tid-targeted proteins from G. theta and nuclear-encoded
homologues from A. thaliana and C. merolae are larger
than plastid-encoded proteins, but similar to nucleus-
encoded plastid-targeted proteins. The distances between
the three species are not equal. As for the plastid-encoded
proteins, the distance to A. thaliana from both G. theta and
C. merolae is much greater than the difference between G.
theta and C. merolae (green, Figure 2a). Again, this indi-
cates that red and green plastids are more distant than pri-
mary and secondary red plastids (as expected). However
this result is interesting because it is contrary to the results
obtained for nucleomorph-encoded non-plastid proteins,
which suggested that nucleomorph proteins were evolv-
ing at a faster rate. In the case of the chlorarachniophyte,
average distances between nucleomorph-encoded plastid-
targeted proteins from B. natans, and nucleus-encoded
homologues from A. thaliana and C. reinhardtii are also
greater than plastid-encoded proteins. In this case, how-
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ever, the results contrast sharply with G. theta because the
distance to B. natans from both A. thaliana and C. rein-
hardtii is much greater than the difference between A. thal-
iana and C. reinhardtii (green, Figure 2b), showing that in
this case both types of nucleomorph-encoded proteins
(plastid and periplastidal) have experienced accelerated
evolution.

Relative rate tests can be used to measure the degree of
divergence of two genes from an equally distant outgroup
[53,54]. Relative rate tests were performed to determine
differences in rates of evolution of individual genes
encoding plastid-targeted proteins from the three
genomes of both B. natans and G. theta and their homo-
logues in the green alga C. reinhardtii and the red algal C.
merolae. A. thaliana was used as an outgroup for both the
B. natans and G. theta datasets. Relative rates were calcu-
lated using RRTree [55] and were tested at a 95% confi-
dence interval (Table 2). Nucleomorph-encoded plastid
proteins in B. natans fail the relative rate test at a 95% con-
fidence level at a far high frequency than plastid proteins
encoded in either the chloroplast or nuclear genomes. Of
the plastid proteins encoded in the B. natans nucleo-
morph genome, 82% fail the relative rate test, in each case
the peptide is evolving more rapidly in B. natans. Similar
proportions of nuclear-encoded plastid-targeted proteins
(33%) and plastid-encoded proteins (37%) fail the rela-
tive rate test in B. natans in which cases B. natans is typi-
cally the most rapidly evolving peptide. In G. theta,
nucleomorph-encoded plastid-targeted proteins fail the
relative rate test more frequently than those encoded in
the plastid or nucleus, but the difference is not nearly as
pronounced as in B. natans. In fact, nucleomorph encoded
plastid-targeted proteins in G. theta only fail the relative
rate test 11% more frequently than nuclear-encoded plas-
tid-targeted proteins in which G. theta is the most rapidly
evolving taxon. Interestingly, of the 17% of the plastid-
encoded peptides that fail the relative rate test, G. theta is
not the most rapidly evolving ingroup. This may indicate
that the plastid of C. merolae is evolving at an accelerated
rate compared to that of G. theta.

Overall, the rate of evolution of plastid proteins encoded
in the nucleomorph of cryptomonads is in line with those
encoded in the nucleus, despite the fact that other nucle-
omorph-encoded proteins are generally evolving at a
higher rate. In chlorarachniophytes, however, the nucleo-
morph-encoded plastid-targeted proteins are evolving
much faster than those encoded in the nucleus (as was
also seen for non-plastid nucleomorph-encoded pro-
teins), which provides one of the first indications that the
mode of evolution in these two genomes is fundamentally
different.

The proteins retained in nucleomorph genomes are not 
fast-evolving in other organisms
To further test if the genes retained in the nucleomorph
genome are present because the proteins they encode are
tolerant of high mutation rates, we compared the evolu-
tionary rates of these proteins in other organisms to the
average rates of other plastid-targeted proteins in their
nuclear genomes as well as genes retained in the plastid
genome. This would reveal if the proteins encoded in the
nucleomorph genomes were generally more divergent in
all species or not. Since these are proteins of plastid origin,
the complete genomes of photosynthetic eukaryotes were
used, including the diatom Thalassiosira pseudonana, and
the distance of these proteins compared to an extant free-
living plastid relative; the cyanobacterium Synechocystis
PCC 6803. This analysis showed that plastid proteins that
are encoded in the nucleomorph of either G. theta or B.
natans (green bars, Figure 3) are not significantly more
divergent in any other species than plastid-targeted pro-
teins are in general (Figure 3). We should point out that
detecting any differences now may be hampered by the
fact that all nucleus-encoded plastid-targeted proteins
may have existed for some time in a nucleomorph-like
genome that has since been lost. This analysis also shows
that plastid-encoded proteins are generally less divergent
(red bars, Figure 3), as shown in Figure 1, however in this
analysis the range of error was large because of the great
distance to the cyanobacterium.

Table 2: Percentage relative rates rest (calculated by RRTree) failures (P < 0.05; 95% confidence) of plastid proteins encoded in three 
genomes

Organism Genome % Failure % failure when the B. natans or 
G. theta encoded protein is 

evolving faster

G. theta plastid 17 0
nucleus 26 22

nucleomorph 33 33
B. natans plastid 37 31

nucleus 33 33
nucleomorph 82 82
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Are cryptomonad nucleomorphs still diverging rapidly?
One of the important observations of prokaryotic
enslaved genomes is that, despite the divergence from
their free-living relatives, enslaved genomes themselves
are generally closely related. For example on a phyloge-
netic tree of gamma-proteobacteria there is a long branch
leading to the Buchnera aphidicola clade, but strains of B.
aphidicola from many aphid species are separated by rela-
tively short distances[56]. This is important because it
shows that there are large changes after enslavement, esti-
mated to be 200–250 million years ago [57], but then the
genomes become stable [31]. This has been shown in
other systems, see table 1. So, these genomes, while highly
derived, are apparently stable in this derived condition. In
the case of bacterial endosymbionts of invertebrates there
is little evidence to suggest that they are becoming
organelles and losing genetic information to the host.

Similarly, while there may still be some ongoing gene
transfer from plastid and mitochondrial genomes [58-61],
it seems that a core genome is relatively stable [51,52]. To
extrapolate to endosymbiont nuclear genomes, it is criti-
cal to know if the rate of divergence between two nucleo-
morph genomes is similar or different than the rate of
divergence between their hosts. If they are behaving as
other enslaved genomes do, then the distance will be
smaller and perhaps this is one indication of having
reached stability. If the forces driving the divergent nature
of nucleomorphs are still active, then they will be more
divergent than their hosts.

The average distances between nucleus and nucleomorph-
encoded plastid-targeted proteins, and nucleomorph pro-
teins active in the periplastidial space were calculated for
two cryptomonads, G. theta, and R. salina, and compared
to their homologues in C. merolae. This analysis was made
with homologues of six nucleomorph-encoded plastid-
targeted protein, six nucleus-encoded plastid-targeted
proteins, and nine nucleomorph-encoded non-plastid
proteins. The distances between nucleomorph-encoded
proteins (both plastid and non-plastid) from G. theta and
R. salina are actually less than the distances between
nucleus-encoded proteins (Figure 4). Moreover, for both
sets of nucleomorph-encoded proteins and for the
nucleus-encoded proteins, the distance to C. merolae from
both G. theta and R. salina is greater than the distance
between G. theta and R. salina. The distance between R.
salina and G. theta for nucleomorph non-plastidproteins
is slightly greater than for plastid-targeted proteins. Taken
together, these results suggest that the nucleomorph pro-
teins of cryptomonads are not diverging rapidly but, like
their plastid genomes, are evolving at a slower rate than
their nuclear genomes. However, the proteins not targeted
to the plastid are slightly less constrained than those pro-
teins targeted to the plastid.

Conclusion
Our analyses show that nucleus-encoded plastid-targeted
proteins are, on average, more divergent than proteins
encoded in the plastid genome. Although the results can-
not explain the reason for this difference, because the pro-
teins encoded in both genomes are active in the same
cellular compartment, the plastid, we assume that they are
under similar selection pressures and so the difference is
more likely to be attributed to a higher rate of substitution
in the nuclear genome than to differences in selection
pressure. Similarly we confirmed the expectations that
protein-coding genes encoded and active in the nucleo-
morph have accumulated more mutations than nuclear or
plastid-encoded proteins but again cannot distinguish
between rapid mutation rates in the nucleomorph
genomes as opposed to relaxed selective pressures on pro-
teins active within the periplastidal space.

Average distances of homologues from four taxa of plastid proteins encoded in the nucleus (blue), nucleomorph (green) and plastid (red) in (A) G. theta and (B) B. natans from the cyanobacterium Synechocystis spFigure 3
Average distances of homologues from four taxa of plastid 
proteins encoded in the nucleus (blue), nucleomorph (green) 
and plastid (red) in (A) G. theta and (B) B. natans from the 
cyanobacterium Synechocystis sp. PCC 6803.
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Two more significant results, however, come from the
nucleomorph genomes. First, nucleomorph-encoded
plastid-proteins reveal differences in the evolution of
cryptomonad and chlorarachniophyte nucleomorphs. In
G. theta, the nucleomorph-encoded plastid-proteins are
evolving, on average, at about the same rate as nuclear-
encoded plastid proteins. In contrast, B. natans nucleo-
morph-encoded plastid-targeted proteins are evolving
much faster than those encoded in the nucleus, and
indeed evolve at about the same rate as other nucleo-
morph proteins. Second, the nucleomorphs of two cryp-
tomonads are diverging less rapidly than their nuclear
genomes. The nucleomorph-encoded proteins active in
the periplastidial space are somewhat more divergent
than plastid-targeted proteins, but still less than nuclear
proteins and this may reflect relaxed selection pressure in
this compartment. Together with evidence from Lane et al
[62], which shows that cryptomonad nucleomorph
genomes differ in size but have conserved other properties
such as gene order, our results suggest that the nucleo-
morph genomes of cryptomonad species are not rapidly
evolving and are likely relatively conserved. This is com-
parable to other enslaved genomes such as bacterial endo-
symbionts and many plastid and mitochondrial genomes.
Unfortunately, there is no data from other species of chlo-
rarachniophytes with which to make a similar compari-
son. From this single species it is difficult to determine
whether the nucleomorph genome is stable or not, but by
comparison to cryptomonads it seems that the nucleo-
morph-encoded proteins in B. natans are more weakly
constrained. It is possible that differences exist between
the biology of these two compartments that promote a
higher degree of sequence conservation in one lineage
than in the other. Just what the underlying causes of such
different rates of evolution may be is not obvious, given

what is currently known about nucleomorphs, but further
information from a greater diversity of chlorarachnio-
phyte nucleomorphs may resolve whether the nucleo-
morph of B. natans is itself evolving rapidly, or whether
the ancestor of chlorarachniophyte nucleomorphs under-
went a rapid burst of sequence evolution subsequent to
the endosymbiotic event that gave rise to the chlorar-
achniophyte endosymbiont.

Methods
Identification of plastid-proteins
Proteins representing known plastid functions from other
eukaryotes and cyanobacteria, were used to search ongo-
ing EST projects from the cryptomonads Guillardia theta
(CCMP 327) and Rhodomonas salina (CCMP 1319) and
also previously published data from B. natans [16,47],
resulting in a set of putative nucleus-encoded plastid-tar-
geted protein genes. In the cases of B. natans where several
lateral gene transfers have been identified [16], only
nuclear encoded plastid proteins of chlorophyte origin
were used. ESTs were completely sequenced on both
strands from over-lapping cDNA clones for each cluster.
New sequences analysed here have been deposited in
GenBank under accession numbers DQ383756-
DQ383799. Proteins were also identified from the coding
sequences of the ongoing sequencing project of the plas-
tid genomes of Bigelowiella natans and the plastid genomes
of G. theta [46], Arabidopsis thaliana [63], Cyanidioschyzon
merolae [64] and Odontella sinesis [65]. Homologues of
plastid-proteins were identified from the nuclear genomes
of Thalassiosira pseudonana [66], A. thaliana [67], C. mero-
lae [40]. Proteins sequences were also used from the com-
plete genome of the cyanobacterium Synechocystis sp. PCC
6803, and the nucleomorph genomes of G. theta [7] and
B. natans (DQ158856 – DQ158858). When multiple iso-

Radar graphs of average distance of nucleus- and nucleomorph-encoded plastid proteins and nucleomorph-encoded non-plas-tid proteins from the two cryptomonads R. salina (RS), G. theta (GT) and the free living red algae C. merolae (CM)Figure 4
Radar graphs of average distance of nucleus- and nucleomorph-encoded plastid proteins and nucleomorph-encoded non-plas-
tid proteins from the two cryptomonads R. salina (RS), G. theta (GT) and the free living red algae C. merolae (CM).
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forms existed in the algal or plant nucleus and it was not
obvious which isoform was the orthologue, the distances
for all isoforms were calculated and the isoforms with the
closest distance to the cryptomonad or chlorarachnio-
phyte was used, providing that the same isoforms from
the algae and plant were also closest to each other. Alter-
natively, in a few cases, a neighbour-joining phylogenetic
tree was constructed to determine groups of isoforms. In a
minority of cases for nucleomorph-encoded plastid pro-
teins in B. natans where there were multiple paralogues in
both A. thaliana and C. reinhardtii, the nearest Arabidopsis
paralogue to B. natans was not nearest to the C. reinhardtii
paralogue closest to B. natans. In these cases the paralogue
closest to B. natans in pair-wise distance (using Dayhoff)
was chosen. If it was not possible to determine which iso-
form was the likely original paralogue then that protein
was excluded from the analysis. For analyses with nucleo-
morph-encoded non-plastid proteins a subset of proteins
involved in transcription, translation (ribosomal subunits
excepted) and protein folding for which homologues
could be identified in A. thaliana and C. reinhardtii or C.
merolae, was used.

Identification of R. salina nucleomorph transcripts
Proteins encoded in the nucleomorph genome of Guillar-
dia theta were used to search a database of Rhodomonas
salina (CCMP 1319) ESTs using tBLASTn. The GC content
of the transcripts was calculated and compared to the GC
content of the G. theta nucleomorph and nuclear genome
and also to R. salina proteins identified as being nuclear-
encoded, plastid-targeted. R. salina transcripts with homo-
logues in the G. theta nucleomorph with coding regions of
28% GC content or less were determined to be nucleo-
morph encoded.

Calculation of distances
Protein alignments were made using Clustal X [68] and
refined in MacClade (Sinauer Associates, MA. USA). Dis-
tances were calculated using PAUP 4.0b10 (Sinauer Asso-
ciates, MA. USA) and TREE-PUZZLE 5.2 [69] with either
the Dayhoff or VT substitution matrix. For comparisons to
G. theta distances were also calculated with the Dayhoff
substutution matrix and nine rates catagories (eight varia-
ble and one invariable), to test for saturation [see Addi-
tional file 1].

Relative rates
Relative rate tests were performed using the RRTREE pro-
gram [55] using C. reinhardtii as an ingroup and A. thal-
iana as an outgroup for B. natans datasets. C. merolae was
used as an ingroup and A. thaliana as an outgroup for G.
theta datasets. The test was used to compare the evolution-
ary rate of individual genes from each of the three
genomes of B. natans and G. theta to its compartment spe-
cific homologue in the genomes of C. reinhardtii and C.

merolae. Since a failure of a relative rate test does not indi-
cate which taxon is evolving more rapidly, we compare
failures where G. theta or B. natans is the most rapidly
evolving ingroup.
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