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Abstract
Background: Genetic diversity of the human immunodeficiency virus type 1 (HIV-1) population
within an individual is lost during transmission to a new host. The demography of transmission is
an important determinant of evolutionary dynamics, particularly the relative impact of natural
selection and genetic drift immediately following HIV-1 infection. Despite this, the magnitude of this
population bottleneck is unclear.

Results: We use coalescent methods to quantify the bottleneck in a single case of homosexual
transmission and find that over 99% of the env and gag diversity present in the donor is lost. This
was consistent with the diversity present at seroconversion in nine other horizontally infected
individuals. Furthermore, we estimated viral diversity at birth in 27 infants infected through vertical
transmission and found there to be no difference between the two modes of transmission.

Conclusion: Assuming the bottleneck at transmission is selectively neutral, such a severe
reduction in genetic diversity has important implications for adaptation in HIV-1, since beneficial
mutations have a reduced chance of transmission.

Background
The size of the inoculum that initiates infection in HIV-1
is unknown, although the loss of diversity is thought to be
substantial following both horizontal [1-7] and vertical
[8,9] transmission. If the bottleneck is selectively neutral,
genetic drift will occur because only a small number of

variants are chosen at random from the population to
propagate the new infection. The smaller the amount of
genetic diversity transmitted the greater the magnitude of
drift, lowering the probability that adaptive changes that
emerge within hosts will survive transmission.
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In RNA viruses with a high deleterious mutation rate the
majority of variants exhibit a replicative capacity lower
than the mean [10-12]. Because the fittest variants may
only be present at a low frequency, they are susceptible to
random loss. Hence when genetic drift is strong, deleteri-
ous mutations may accumulate, leading to an irreversible
decline in population fitness [13]. Although the high rate
of recombination in HIV-1 in vivo [14-16] has the poten-
tial to rescue debilitated haplotypes [13], if a new infec-
tion is initiated by only one or a few viral particles, and if
these are chosen at random from the parent population,
then the transmission of HIV-1 will likely incur a substan-

tial reduction in fitness [17-21]. As the inoculum size
increases, potential fitness losses are rapidly reduced
[22,23].

Conversely, natural selection may lower the susceptibility
of HIV-1 to reductions of fitness associated with transmis-
sion. In acutely infected HIV-1 patients, the usually
diverse envelope V3 region is more homogeneous than
gag p17, whereas in chronic infection the opposite is true
[6,7]. Positive selection operating on envelope during
transmission has been invoked as an explanation [6,7]. If
selection operates to influence which variants are trans-

Phylogenetic relationship of (a) env V1-V4 and (b) gag p24 sequencesFigure 1
Phylogenetic relationship of (a) env V1-V4 and (b) gag p24 sequences. Maximum likelihood phylogenies depicting the 
relationship between sequences from donor and recipient, illustrating the reduction in genetic diversity at transmission. Hori-
zontal branch lengths are drawn on a scale of nucleotide changes per site. Branches leading to recipient sequences are high-
lighted in red, with the day of sample collection relative to the first recipient sample (day 0) shown for each sequence.
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mitted then it will also prevent the fixation of deleterious
mutations.

Herein we estimate, using population genetic techniques,
the proportion of genetic diversity that survives transmis-
sion in a single homosexual transmitter pair, with samples
available before and after the transmission event. The
demographic history of the virus population in both
donor and recipient was reconstructed using coalescent
methodology, allowing quantification of the diversity
present close to the time of infection. The coalescent was
implemented within a Bayesian framework, which ena-
bled co-estimation of substitution and demographic
parameters using serially sampled sequences [24-26].

Through a comparison of different regions of the genome
(namely env V1-V4 and gag p24) we also investigate
whether selection is likely to be acting during HIV-1 trans-
mission. Finally, we generalise our result by estimating
the diversity present close to the time of infection in nine
homosexual seroconverters for which donor sequences
were unavailable, and compare horizontal and vertical
modes of transmission using 27 infants infected at birth.

Results
To directly visualise the change in genetic diversity during
horizontal HIV-1 transmission between the donor-recipi-
ent pair studied, we first inferred the phylogenetic rela-
tionships among their HIV-1 sequences using maximum
likelihood methods. The phylogenies for env V1-V4 and
gag p24 depicted in Figure 1 show that branch lengths are
substantially shortened immediately after transmission,
illustrating that a significant reduction in diversity has
occurred.

To investigate the demographics of viral transmission in
this transmitter pair more closely, four coalescent models
were fitted to the sequence data. Crucially, samples were
available both before and after the transmission event
allowing distinct demographic functions for donor and
recipient HIV-1 populations (Equations 1 to 5), with the
time of transition between them estimated from the data
[26]. In addition to a null model that constrained the
effective population size in donor (ND) and recipient (NR)
to be identical (so that there is no bottleneck at transmis-
sion), models with constant, exponential and logistic
demographic functions for the recipient population were
fitted. In all cases the donor population size was assumed
to be constant.

The relative Bayesian posterior scores for each demo-
graphic model are listed in Table 1. For both env V1-V4
and gag p24, the model with the lowest AIC (the preferred
model) fits a constant population size in the donor and
logistic growth in the recipient (Equations 4 and 5). The
null hypothesis that there has been no change in popula-
tion size at transmission was therefore rejected. Using the
estimated model parameters we reconstructed the demo-
graphic profiles of genetic diversity (Nτ, the product of the
effective population size and generation length in days
[27]) against time for each gene (Figure 2).

To further test the extent of the transmission bottleneck,
the demographic history of the population was recon-
structed using the Bayesian skyline plot [see Methods,
[28]]. The results for env V1-V4 and gag p24 are shown in
Figure 2. In both cases there is a good fit between the
demographic profiles estimated using the two different
methods. Noticeably, the timing of the transmission bot-

Table 1: Fit of demographic models

Demographic Model Coalescent
Recipient Donor lnLkb AICc ESSd

env V1-V4

Constant -a -4155.385 8310.77 523.85
Constant Constant -4144.993 8291.99 419.77
Exponential Constant -4103.717 8211.43 643.10
Logistic Constant -4090.154 8186.31 126.43

gag p24

Constant -a -3118.180 6236.36 483.84
Constant Constant -3121.900 6245.80 440.34
Exponential Constant -3116.760 6237.52 378.33
Logistic Constant -3089.852 6185.70 202.69

aPopulation size in Recipient constrained to be the same as that in Donor
bNatural logarithm of the likelihood obtained from fitting the demographic model to the data
cAkaike Information Criteria
dEffective Sample Size (number of independent coalescent genealogies sampled from the posterior distribution)
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Reconstructed demographic profiles for (a) env V1-V4 and (b) gag p24Figure 2
Reconstructed demographic profiles for (a) env V1-V4 and (b) gag p24. Estimates of Nτ are shown on a log scale 
against time backwards since the most recent sample. Only days on which sequences were sampled are shown, measured rela-
tive to the first recipient sample (day 0). Mean estimates of Nτ obtained from the best fit Logistic-Constant demographic model 
and the Bayesian skyline plot are shown with their HPD confidence bounds.
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tleneck is the same, and evidence for a bottleneck is read-
ily apparent under both models.

The Bayesian skyline plot also justifies our use of the logis-
tic-constant demographic model to estimate the diversity
that survives during horizontal transmission of HIV-1.
Using the logistic growth model (Equations 4 and 5) we
were able to calculate diversity in the recipient NRτ at the
estimated time of transmission ttrans. We estimated ttrans to
be approximately 30 days prior to collection of the first
recipient sample (day 0) for env and 40 days for gag (Table
2). We calculated NRτ(ttrans) to be 1.6 for env V1-V4, and
2.0 for gag p24 (Table 2). These values are near the lower
prior boundary of one and their posterior distributions
both exhibit a large positive skew (Figure 3). The level of
diversity in the donor at the time of transmission NDτ was
compared with that which was transmitted NRτ(ttrans) as a
percentage ratio δ. For env, NDτ was estimated to be 1014,
giving a value of δ as 0.17%. For gag p24, NDτ was 771,
giving δ as 0.29% (Table 2).

Importantly, if selection was acting on env to restrict the
proportion of variants capable of establishing a new infec-
tion, we would expect a greater loss of diversity in this
region when compared to gag, assuming recombination
between the two regions. Therefore, the similarity in δ
between env and gag argues against strong selection at
transmission.

We conclude that > 99% of genetic diversity in the donor
viral population, in both env and gag, was lost during this
case of horizontal transmission. A reduction in viral diver-
sity after horizontal transmission has been reported fre-

quently in the literature [1,3-6]. However, information
regarding the diversity present in the donor is often lack-
ing, and even in cases where this data exists [2,7] it is dif-
ficult to measure levels of diversity close to the
transmission event. The method implemented here over-
comes this problem, estimating genetic diversity at the
inferred time of transmission, and therefore allows accu-
rate quantification of the transmission bottleneck.

To generalise this result we next investigated diversity
(Nτ) of the founding viral population in nine patients
infected through homosexual contact for which donor
sequences were unavailable. Sequences had been pub-
lished previously [29]. Assuming the best-fit demographic
model, Nτ at seroconversion was found to vary between
around 1720 and 8 (mean: 406; Table 3). In the recipient
of the transmitter pair, Nτ at seroconversion (day 0) was
1150 (HPD upper: 1930), which is not significantly differ-
ent (p = 0.302; one-sample t-test).

Finally, to compare the diversity present close to the time
of infection in patients infected via two different modes of
transmission, we estimated Nτ at birth (transmission) in
27 vertically infected infants. The average Nτ at birth was
696 (Table 3). Although we were unable to detect a bottle-
neck at transmission in eight of the infants (p2, p3, p6, p8,
pa, pd, pc and pd), the estimates for Nτ close to the time
of infection in the horizontally and vertically infected
patient groups were not significantly different (p = 0.320;
two-sample t-test).

Table 2: Parameter estimates used to calculate the percentage diversity that survived transmission

Parameter Meana HPDb Lower HPD Upper ESSc

env V1-V4

NRτ 1216.7 534.4 2033.9 1338.94
NDτ 1014.0 541.2 1538.0 955.71
ttrans

d 30.9 15.2 46.9 174.57
NRτ(ttrans) 1.6 1.0 3.1 2456.87

δ 0.17 0.06 0.35 2043.08

gag p24

NRτ 926.6 419.9 1512.6 1454.31
NDτ 770.7 413.5 1184.7 1356.90
ttrans

d 42.4 27.5 53.0 274.51
NRτ(ttrans) 2.0 1.0 4.5 3532.69

δ 0.29 0.07 0.67 3310.56

aMean of the marginal posterior probability distribution of parameter values
bHighest Posterior Density encompassing 95% of the marginal posterior distribution of parameter values
cEffective Sample Size (number of independent samples taken from the posterior distribution of values for a particular parameter)
dEstimated time of transmission in days prior to the day of the fist recipient sample (day 0)
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Discussion
From our analysis of a single donor and recipient trans-
mission pair, we conclude that in this case the viral diver-
sity sampled during homosexual transmission of HIV-1
was very small (< 1%). This result was consistent for both
env and gag. Interpretation of our finding is dependent on
whether transmission is considered a neutral or selective
process. In particular, if transmission is neutral it can be
concluded from the severe bottleneck reported here that
the consequent genetic drift will be strong, with negative
consequences for viral fitness. Natural selection on the
other hand is likely to mitigate any deleterious effects of
genetic drift associated with transmission.

It is possible that the diversity present in the inoculum
itself was larger, and that selection acting on env restricted
propagation of the new infection to a few members of the
initial population [30]. The similar levels of diversity
observed in env and gag could then be explained by
genetic coupling between the two regions. The frequency
with which recombination occurs in HIV-1 [14-16] argues
against such linkage, suggesting that independent selec-
tive forces acting on env and gag must be invoked to
explain this observation. Alternatively, if transmission is
neutral then our estimate of the diversity transmitted will
be closer to the diversity actually present in the inoculum.
This will have implications for the replicative fitness of the
viral population responsible for founding a new infection.

Indeed, it has been shown experimentally that a random
population bottleneck of a single clone can have severe
consequences for the replicative fitness of HIV-1 [21]. Fur-
thermore, by lowering their chances of transmission,
genetic drift has the potential to prevent the accumulation
of advantageous changes at the population level, thereby
impeding the long-term adaptation of HIV-1 [31].

Neutral transmission also means that the degree of genetic
diversity passed between individuals is dependent on the
diversity present in the donor at the time of transmission.
Because diversity in their respective donors is likely to vary
greatly depending on the stage of infection [29], this
could in part explain our finding of wide variation across
patients in diversity of the viral population close to trans-
mission (Table 3). Furthermore, we found the degree of
variability across patients infected by the same route to be
greater than any difference between groups infected via
different modes of transmission (i.e. the difference
between groups was not significant). Interestingly, the
diversity present early in acute infection in sexually and
parenterally infected individuals also appears similar [2].

We can conclude from our results that diversity of the
founding population is similarly restricted during both
horizontal and vertical transmission. However, it is also
clear that further study is required to investigate the varia-
bility observed. For example, although a reduction in
diversity is frequent [1-9], the transmission of multiple
variants has also been reported during both horizontal
[32] and vertical transmission [33-35], suggesting that the
bottleneck is not universally restrictive.

Conclusion
Our findings quantify the contraction in genetic diversity
that occurs during horizontal transmission of HIV-1. It is
clear from the severity of the bottleneck that further work
is required to investigate the nature of the selective forces
surrounding transmission, if we are to interpret the fitness
consequences for HIV-1 in the newly infected individual.
Furthermore, the analyses presented suggest that the
mode of transmission may not be a significant influence
on the genetic diversity transmitted.

Methods
Patient material
The donor and recipient patients of the transmitter pair
analysed here were recruited as part of an on-going study
of acute HIV-1 infection and have been described in detail
elsewhere [36]. The donor had been infected for at least
two years prior to transmission and exhibited a stable viral
load. He had not received any antiretroviral treatment.
The recipient was also untreated during the time of sam-
pling but progressed rapidly towards disease with high
viral loads and low CD4+ cell counts. The clinical data for

Effective population size at transmission NRτ(ttrans)Figure 3
Effective population size at transmission NRτ(ttrans). 
The marginal posterior probability density of NRτ(ttrans) is 
shown for both env V1-V4 and gag p24. The shaded area rep-
resents the uniform prior distribution that was used, with a 
minimum bound of one.
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both donor and recipient during sampling is given in
Additional file 1.

The first recipient sample (day 0) was collected six weeks
after he last tested PCR (polymerase chain reaction) nega-

tive for HIV-1 DNA and RNA. Three additional samples
from the recipient were available at days 11, 59 and 237.
Donor samples were collected 70 and 155 days prior to
the first sample from the recipient. Gag p24 (834bp) and
the V1-V4 region of the env gene (951bp) were sequenced

Table 3: Estimates of viral diversity close to the time of transmission

Patient Best-fitting 
demographic model

µa Nτ b Nτ close to transmissionc

Meand HPDe upper

Horizontal transmission

p1 Logistic 0.0123 2293 36.00 153.19
p2 Logistic 0.0166 4441 27.98 148.32
p3 Logistic 0.0175 1612 29.02 80.12
p5 Exponential 0.0223 2439 287.78 670.67
p6 Logistic 0.0195 1511 7.86 20.39
p7 Logistic 0.0085 8632 253.78 1173.95
p8 Exponential 0.0162 6003 1722.98 2911.65
p9 Logistic 0.0071 7168 1283.11 3211.35
p11 Logistic 0.0128 6505 9.76 34.48
Mean 0.0148 4512 406.47 933.79

Vertical transmission

p1 Logistic 0.0201 4183 15.48 79.99
p2 Constant 0.0560 275 275.46 511.97
p3 Constant 0.0163 383 383.27 714.69
p4 Exponential 0.0098 67696 1214.76 5810.63
p5 Exponential 0.0133 7372 1360.46 3444.98
p6 Constant 0.0251 183 181.98 323.10
p7 Exponential 0.0226 1165 151.26 294.62
p8 Constant 0.0145 521 521.84 857.01
p9 Exponential 0.0120 2740 191.34 405.22
p10 Logistic 0.0188 1050 384.47 877.21
p11 Logistic 0.0163 740 410.67 926.82
p12 Exponential 0.0206 1730 121.83 254.40
p13 Exponential 0.0218 2603 81.27 173.89
p14 Exponential 0.0164 1865 208.00 411.70
p15 Logistic 0.0397 889 1.55 4.80
p16 Logistic 0.0173 269904 261.90 577.67
p18 Logistic 0.0097 146723 960.34 1978.63
p19 Exponential 0.0095 2842 342.42 655.38
p21 Exponential 0.0053 302840 1712.90 4936.78
p22 Exponential 0.0046 547670 3159.60 11050.00
p23 Logistic 0.0093 123360 371.85 706.09
p24 Logistic 0.0102 97018 524.69 814.59
p25 Logistic 0.0071 2508 2194.63 4321.04
pa Constant 0.0280 640 638.53 895.76
pb Constant 0.0076 2006 2000.48 3593.83
pc Constant 0.0094 879 879.45 1626.67
pd Constant 0.0146 254 254.26 526.95
Mean 0.0169 58890 696.47 1732.39

aSubstitution rate in number of changes per site per year
bProduct of the effective population size and generation time in days at the most recent time point
cSeroconversion or birth for horizontally and vertically infected patients respectively
dMean of the marginal posterior probability distribution of parameter values
eHighest Posterior Density
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from viral RNA. Envelope sequences were obtained from
all time points using previously described methods [37],
yielding a total of 100 clones (average: 17 clones per time
point; range: 12–21). For gag p24, a total of 100 clones
were sequenced from all time points except day 0 (aver-
age: 20 clones per time point; range: 10–28). Details of
viral loads from each time point are listed in Additional
file 1. Sequences are available from GenBank under acces-
sion numbers DQ316399–DQ316601.

Envelope sequences were also obtained from 27 HIV-1
positive children. All were HIV negative by PCR at birth
indicating that infection occurred peri-partum rather than
in utero. Detailed descriptions of the cohort [38,39] and
sequencing techniques [40] are given elsewhere. The clin-
ical prognosis of each patient is given in Additional file 2.
Sequences were around 360bp in length, spanning the
highly variable envelope V3 region. Multiple clones were
collected from serial time points post-infection (Addi-
tional file 2). All sequences (excepting those from pa, pb,
pc and pd) were derived from viral RNA. These sequences
are available from GenBank under accession numbers
AY823998–AY824946.

Phylogenetic inference
Sequences were first aligned manually using Se-Al [41].
Maximum likelihood phylogenies for env V1-V4 and gag
p24 sequences were then constructed using PAUP* [42].
Estimation assumed the HKY85 + I + dΓ4 model of nucle-
otide substitution [43,44]. All parameters were inferred
from the data using maximum likelihood.

Quantification of the diversity lost during horizontal 
transmission
Within a coalescent framework, and assuming the HKY85
+ dΓ4 model of nucleotide substitution [43,44], four
demographic models were fitted to the transmission pair
sequence data.

Null model: Nt = NR = ND  [1]

All substitution and demographic parameters, including
the time of transmission ttrans, growth rate r, and mid-time
of the population t50, were estimated from the data within
a Bayesian coalescent framework by Markov chain Monte
Carlo (MCMC), using the BEAST program [45]. Bayesian
MCMC estimates each parameter as the mean of its mar-
ginal posterior probability distribution, whilst simultane-
ously incorporating uncertainty in the underlying
genealogy and other parameters. Diversity of the viral
population is given as the product of the effective popula-
tion size and generation length in days Nτ [27].

Uncertainty in the estimated parameter values is summa-
rized by the highest posterior density (HPD) interval,
which contains 95% of the marginal posterior distribu-
tion. The length of the MCMC chain was chosen so that
the effective sample size (ESS) for each parameter was >
100, indicating that parameter space had been sufficiently
explored [24]. Since it consistently gave the lowest value,
the coalescent ESS (the number of effectively independent
log likelihoods sampled from the coalescent posterior dis-
tribution) for each model is given in Table 1. All priors
were assumed to be uniform on a natural scale, including
the effective population size in the recipient at transmis-
sion NRτ(ttrans). The prior boundaries for the time of trans-
mission ttrans were set from when the recipient was last
confirmed HIV-1 negative (53 days before the first recipi-
ent sample) to the time at which the first recipient sample
was collected (day 0). We placed a minimum prior bound
of one on NRτ(ttrans). With the exception of ttrans and
NRτ(ttrans), the MCMC chain did not impinge on any of
the prescribed prior boundaries for the models tested.

The relative fit of each model to the data was assessed
using the Akaike Information Criteria (AIC) [46]. The AIC
of a given model is twice its marginal log likelihood plus
the number of parameters specified (AIC = 2lnLk + 2p).
The model with the lowest AIC is selected as the best rep-
resentation of the data.

Selection of the appropriate demographic model allowed
us to calculate NRτ(ttrans ) and quantify the amount of
diversity lost at transmission through a comparison of
NRτ(ttrans ) with NDτ as the percentage ratio δ.

Bayesian skyline plot
The skyline plot is a piecewise-constant model of popula-
tion size that estimates Nτ for each coalescent interval of
the genealogy [47,48]. It allows the demographic history
of a population to be reconstructed without a priori speci-
fication of a particular model. The Bayesian skyline
extends the generalised skyline plot [48] to take into
account serial sequence sampling times and an uncertain
genealogy [28]. The distribution of skyline plots is sam-
pled using MCMC according to their posterior probabili-
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ties given the sequence data, to produce an estimate and
HPD confidence intervals of the effective population size
through time. The Bayesian skyline plot was estimated
using BEAST [45], allowing ten steps in Nτ through time.
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