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Abstract
Background: Only one spliceosomal-type intron has previously been identified in the unicellular
eukaryotic parasite, Giardia lamblia (a diplomonad). This intron is only 35 nucleotides in length and
is unusual in possessing a non-canonical 5' intron boundary sequence, CT, instead of GT.

Results: We have identified a second spliceosomal-type intron in G. lamblia, in the ribosomal
protein L7a gene (Rpl7a), that possesses a canonical GT 5' intron boundary sequence. A
comparison of the two known Giardia intron sequences revealed extensive nucleotide identity at
both the 5' and 3' intron boundaries, similar to the conserved sequence motifs recently identified
at the boundaries of spliceosomal-type introns in Trichomonas vaginalis (a parabasalid). Based on
these observations, we searched the partial G. lamblia genome sequence for these conserved
features and identified a third spliceosomal intron, in an unassigned open reading frame. Our
comprehensive analysis of the Rpl7a intron in other eukaryotic taxa demonstrates that it is
evolutionarily conserved and is an ancient eukaryotic intron.

Conclusion: An analysis of the phylogenetic distribution and properties of the Rpl7a intron
suggests its utility as a phylogenetic marker to evaluate particular eukaryotic groupings.
Additionally, analysis of the G. lamblia introns has provided further insight into some of the
conserved and unique features possessed by the recently identified spliceosomal introns in related
organisms such as T. vaginalis and Carpediemonas membranifera.

Background
Spliceosomal introns have now been identified in all
major eukaryotic lineages. Recently added to this list are
several protists that are widely considered to represent
deep divergences within Eucarya: the diplomonad Giardia
lamblia [1], its close relative Carpediemonas membranifera
[2], and the parabasalid Trichomonas vaginalis [3]. The dis-

tribution and conservation of proteins involved in the
removal of spliceosomal introns [1,4,5] suggests that this
intron type is a feature that was present in the ancestor of
this domain of life. While the precise determination of
intron frequency in the T. vaginalis and C. membranifera
genomes awaits further analysis, these preliminary studies
suggest that these two organisms likely contain many
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more spliceosomal introns than are evident in the com-
pact genome of G. lamblia. To date, only one spliceo-
somal-type intron has been reported in G. lamblia despite
the analysis of approximately 5800 predicted open read-
ing frames (ORFs) [1].

One of the most interesting properties of the T. vaginalis
introns is the presence of a functionally important motif
and putative branch-point sequence, ACTAAC, invariantly
located within a 'conserved' 12-nucleotide (nt) intron seg-
ment located directly adjacent to the 3' splice site. Surpris-
ingly, the only known G. lamblia intron also contains the
identical 12-nt motif at its 3' end. Additionally, the
introns from these two organisms display significant
sequence similarity at their 5' ends. This suggests that sim-
ilar splicing mechanisms may be employed to remove
introns in organisms from these two eukaryotic groups,
members of the proposed eukaryotic supergroup Excavata
[6]. These sequence motifs have been shown to be impor-
tant for efficient in vivo splicing of introns in T. vaginalis
[3]; however, since only one intron has been identified in
G. lamblia so far, the extent of conservation of these
sequence motifs in other G. lamblia introns is not known.
It is conceivable that these intron features are indicative of
ancestral eukaryotic spliceosomal introns. Conversely,
these features may be derived and thus be unique among
spliceosomal introns found in these long-branching
eukaryotic taxa.

It has been proposed that most of the identified T. vagina-
lis introns are ancient because introns are also found at
similar positions in homologous genes in some other
eukaryotic taxa [3]. Since the taxonomic sampling
addressing the prevalence of any of these introns is sparse
and because many of these introns are not located in the
same phase or even the same relative amino acid position,
the actual conservation and ancient nature of these
introns requires further verification. The possibility that a
subset of spliceosomal introns could be ancestral to the
eukaryotic radiation is an exciting one and, if true, sug-
gests that these introns might be useful genomic markers
to aid in the elucidation of deep phylogenetic relation-
ships within the domain Eucarya.

Recently, hypotheses describing eukaryotic evolution
have coalesced around a limited number of eukaryotic
supergroups. One scheme [7] proposes six primary
eukaryotic clades: Opisthokonta, Amoebozoa, Plantae,
Chromalveolata [8], Rhizaria [9] and Excavata [6,10]. The
strength of the evidence supporting each of these super-
groups varies, as does the degree of organismal sampling
within the proposed assemblages. The relationships
among the supergroups themselves are currently unde-
fined: i.e., their relative branching order in the eukaryotic
tree is unknown. Even with concatenated data sets com-

prising hundreds of individual sequences, the approaches
of molecular phylogenetics are increasingly challenged to
provide robust and compelling answers to this question.

In this report, we identify an intron in Rpl7a, the gene
encoding the G. lamblia ribosomal protein L7a and an
additional spliceosomal intron in an unassigned ORF that
encodes a non-conserved protein. We observe striking
similarities among the G. lamblia, T. vaginalis and C. mem-
branifera introns. At the same time, departures from the
sequence constraints within these motifs may discrimi-
nate some of the splicing mechanisms employed within
these eukaryotic groups. Our extensive examination of the
phylogenetic distribution and properties of the Rpl7a
intron indicate that it is an ancient spliceosomal intron,
and our study also provides preliminary evidence uniting
three eukaryotic supergroups (Opisthokonta, Amoebo-
zoa, Excavata) to the exclusion of at least two others
(Chromalveolata, Plantae). Our investigation of the dis-
tribution of the Rpl7a intron is the most extensive exami-
nation to date of a conserved intron position in
eukaryotes. Taken together, these results argue that further
examination of the patterns of intron conservation and
distribution within the eukaryotic domain, like other
shared derived characters such as gene fusions, insertions
and gene replacements, can provide a valuable adjunct for
evaluating proposed phylogenetic groupings and frame-
works derived from sequence comparisons.

Results and discussion
A conventional spliceosomal intron in the Giardia lamblia 
Rpl7a gene
In comparing ribosomal protein L7a homologs from var-
ious organisms, we noted that the predicted sequence for
the G. lamblia protein [GenBank:EAA41652] appeared
abnormally truncated at the C-terminal end relative to
other eukaryotic and archaeal sequences, terminating at
position 171 of S. cerevisiae L7a (Fig. 1). In addition, this
truncated sequence displays unusual divergence after
yeast position 161, which is unexpected because this C-
terminal region corresponds to a highly conserved por-
tion of L7a. Further examination of the G. lamblia gene
sequence revealed a 109-nt intron whose removal results
in a predicted L7a protein sequence similar in length to
that of other eukaryotic L7a homologs, and that aligns
readily with them downstream of position 161 (Fig. 1).
The assigned intron boundary sequences, GT...AG (Fig. 2),
are those of conventional spliceosomal introns.

The Rpl7a intron is only the second reported spliceo-
somal-type intron in G. lamblia, a diplomonad widely
considered to be a deep-branching eukaryote. The other
example (35 nt in length) resides in a putative [2Fe-2S]
ferredoxin gene and begins with CT rather than GT at the
5' intron boundary [1]. Comparison of the sequences of
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the two G. lamblia introns reveals striking sequence con-
servation at the intron termini (Fig. 2). Notably, this sim-
ilarity includes the region predicted to contain the intron
branch-point sequence [1] (underlined in Fig. 2). Like-
wise, both the 5' and 3' intron boundary sequences of the
two G. lamblia introns display extensive sequence similar-
ity to the consensus sequence of the known T. vaginalis
introns (Fig. 2). However, there are some significant
nucleotide differences between the G. lamblia Rpl7a intron
and the T. vaginalis consensus motif that suggest some-
what different sequence requirements for splicing in these
two organisms.

As mentioned previously, both CT and GT sequences have
now been observed at the 5' intron boundary of G. lamblia
introns. This observation is made even more significant by
the demonstration of efficient splicing of the G. lamblia
ferredoxin intron in a T. vaginalis in vivo splicing system,
but only after changing the CT to a canonical GT at the
intron 5' boundary [3]. Our identification of a second G.
lamblia intron that contains a canonical GT indicates that
the CT sequence is not an absolute requirement for splic-
ing of these introns in G. lamblia and also suggests that the

constraints on 5' intron boundary sequences are different
in these two organisms.

The second important observation is derived from a com-
parison of the sequences of the putative branch-point
motifs contained within the two G. lamblia introns. The G.
lamblia ferredoxin intron has the putative branch-point
sequence ACTAAC, which is identical to that observed in
all the identified T. vaginalis introns. The G. lamblia Rpl7a
intron instead contains the sequence ACTGAC. By creat-
ing site-directed mutants of a T. vaginalis splicing reporter
construct using an intron from a poly(A) polymerase
gene, Vaňáčová et al. [3] demonstrated the importance of
this sequence element and its position relative to the
intron 3' end for efficient in vivo splicing in T. vaginalis.
However, single-nucleotide substitutions at the position
corresponding to the G nucleotide in the branch-point
sequence of the G. lamblia Rpl7a intron were not exam-
ined for their effects on splicing. Therefore, it is possible
that ACTGAC could be a functional branch-point
sequence for the splicing of T. vaginalis introns.

The majority of the introns identified in the T. vaginalis
genome were found using a sequence-pattern search

Clustal X alignment of ribosomal protein L7a amino acid sequencesFigure 1
Clustal X alignment of ribosomal protein L7a amino acid sequences. The alignment comprises the portion corre-
sponding to positions 135 to 200 in the Saccharomyces cerevisiae protein (full organism names are listed in Table 1). At highly 
conserved positions at which a single amino acid predominates, residues are indicated as white letters on a black background. 
The arrowhead denotes the location of a conserved spliceosomal intron. The predicted Giardia lamblia protein sequence either 
with (above arrowhead) or without (below arrowhead) removal of the intron is shown. Sources of the sequences are: S. cerevi-
siae [GenBank:AAB65045], Homo sapiens [GenBank:NP_000963], D. melanogaster [GenBank:AAN09172], A. castellanii [Gen-
Bank:AY925000], J. libera [GenBank:AY924997], T. pyriformis [GenBank:DQ118092], E. gracilis [GenBank:], H. marismortui 
[GenBank:YP_134885] and G. lamblia [GenBank:AACB01000019].

L7a

                   135                       161                          190

S.cerevisiae GLNHVVALIENKKAKLVLIANDVDPIELVVFLPALCKKMGVPYAIVKGKARLGTLVNQKTSAVAAL

H.sapiens GVNTVTTLVENKKAQLVVIAHDVDPIELVVFLPALCRKMGVPYCIIKGKARLGRLVHRKTCTTVAF

D.melanogaster GTNTVTKLIEQKKAQLVVIAHDVDPLELVLFLPALCRKMGVPYCIVKGKARLGRLVRRKTCTTLAL

A.castellanii GLNHVTSLVESKKAKLVVIAHDVDPIELVVWLPSLCKKVGVPYCIVKSKSRLGQVVHKKTSAVLAI

J.libera GLNHITTLVEQKKAKLVVIAHDVDPIELVLWLPALCRKMDVPYCIIKGKSRLGQLVHQKTATCVAL

T.pyriformis GLNHITTLVEQKKAKLVVIAHDVDPIELVIWLPTLCRKMDVPYCIVKGKARLGTLVGLKTATCLAL

E.gracilis GAQRVFRLVEQKRAKLVLIAHDVDPIEIVLCLPALCRKQGIPWCIVKGKANLGKLVGLKTATSLAF

H.marismortui GTNETTKSIERGSAELVFVAEDVQPEEIVMHIPELADEKGVPFIFVEQQDDLGHAAGLEVGSAAAA

G.lamblia GIRRITSLVESKRAKLVLIANDVDPLELVLWLPTLCHKMGVPYAIVRTKGDLGKLVHLKKTTSVCF

G.lamblia(EAA41652) GIRRITSLVESKRAKLVLIANDVDPLEVCSYARGAVR
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strategy based primarily on nucleotide conservation
observed between the intron boundary sequences of the
first identified T. vaginalis intron and the G. lamblia ferre-
doxin intron. The identified introns, 39 in total, vary in
length between 59 and 196 nt. They contain a consensus
5' splice site sequence GTAYGT and, based on constraints
imposed in the search parameters, the 3' splice-site
sequence ACTAACACAYAG, where the nucleotides in
bold italics indicate the potential branch-point sequence.

To investigate whether an additional group of T. vaginalis
introns might instead contain variations at the fourth
nucleotide position (bold italics) of the branch-point
sequence, ACTAAC, the partial T. vaginalis genome
sequence was searched for potential introns containing
these properties. We also incorporated into our search
parameters an allowance for other sequence differences
within the 3' intron boundary sequence, such as those
observed when comparing the two G. lamblia introns.
Using the pattern-search algorithm PatScan [11], we
searched the entire preliminary genomic data (3X cover-
age) for all sequences containing the sequence pattern
[5'– GTAYGT...5–500 nt...ACTBACNCAYAG-3'], where B
= C, G or T; Y = C or T; N = any nucleotide and the branch-
point sequence is in bold italics. Remarkably, only two
matches to this pattern were found in the entire T. vagina-
lis genome data set and neither of these sequence patterns

appears to be an intron candidate. Furthermore, neither of
these two sequences contains ACTGAC in the predicted
position for the intron branch-point sequence. This result
further emphasizes the importance of the ACTAAC
sequence motif in the T. vaginalis introns and the differ-
ences in sequence constraints apparent between these
introns and those of G. lamblia. If additional T. vaginalis
spliceosomal introns are found (<519 nt in size) that con-
tain alternative sequences at the 3' intron boundary,
sequence differences must also be present in the 5' intron
boundary that prevent the search algorithm from finding
these intron candidates using the parameters we have
employed.

Using search parameters similar to those above (but
allowing G or C as the starting nucleotide at the intron 5'
end), we searched the G. lamblia partial genomic data set
for intron candidates. As expected, the Rpl7a and ferre-
doxin introns are detected by this method, as is an addi-
tional set of 15 matches to this sequence pattern. Of these
matches, only one was a likely intron candidate that had
the potential to disrupt a predicted ORF, among other cri-
teria. Since the ORF in which this candidate intron resides
(or that it disrupts) does not encode a conserved protein
– unlike the Rpl7a intron – further experimentation was
required to prove whether or not it is an intron. Removal
of the intron candidate sequence, nt positions 1263 to
1482 of the G. lamblia contig [GenBank:AACB01000025],
extends the predicted protein encoded by the unassigned
ORF [GenBank:EAA41257] by an additional 118 amino
acids at its amino terminus. Further, when the intron
sequence is removed, the inferred initiation codon is now
positioned directly adjacent to an AT-rich motif that Yee et
al. [12] have previously identified as a promoter element
for other G. lamblia genes. RT-PCR analysis and sequenc-
ing of cDNA clones obtained from the corresponding
mRNA (see Additional File 1) confirm the existence of this
third G. lamblia spliceosomal intron, which is 220 nt long
and exhibits intron boundary sequences similar to those
of the ferrodoxin and Rpl7a introns (Fig. 2).

Extensive genomic DNA information is not yet available
for C. membranifera, and to date only two introns, both
small, have been identified in this protist [2]. In these
introns, potential branch-point sequences (underlined in
Fig. 2) are found abutting the 3' intron boundary, as is
observed in the G. lamblia and T. vaginalis introns. While
the G. lamblia introns lack an obvious polypyrimidine
tract in the vicinity of the 3' end of the intron, C. membran-
ifera introns and the majority of the T. vaginalis introns do
exhibit pyrimidine-rich sequences immediately upstream
of the 3' intron/exon boundary. However, in the C. mem-
branifera introns these pyrimidine-rich sequences include
the potential branch-point sequences whereas in T. vagi-
nalis these sequences (usually T-rich) are found upstream

Conservation of intron boundary sequences in Giardia lam-blia, Trichomonas vaginalis and Carpediemonas membraniferaFigure 2
Conservation of intron boundary sequences in Gia-
rdia lamblia, Trichomonas vaginalis and Carpediemonas 
membranifera. Positions of nucleotide identity within the 
intron sequences in G. lamblia and C. membranifera are indi-
cated with asterisks. Potential intron branch-point sequences 
are underlined. The distance between the intron boundary 
sequences is indicated for each G. lamblia intron as is the dis-
tance variation between these sequences seen in the T. vagi-
nalis introns used to derive the consensus sequence shown. 
The ferredoxin intron sequence is from [1], the T. vaginalis 
introns are from [3], and the carbamate kinase intron 
sequences are from [2].

A/ atgtt...(87nt)..aca ccac /Cgt agactgac

/ aygt.. (41-178nt).. acay /gt agactaac

A/ tcgtgaaaacggcattgccc ct /Tgt agttcttat

A/ acgtaccaacactatt--ct cc /Tgt agtccttat

A/c atgtt...(13nt)..aca acac /Gt agactaac

A/ atgtt..(198nt)..cca acac /Agt agactgac

****** ****** ** *****
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of the potential branch-point sequences. It is also appar-
ent that the C. membranifera introns exhibit less sequence
conservation at their 3' intron boundaries than do the G.
lamblia and T. vaginalis introns. These important differ-
ences in the properties apparent in C. membranifera
introns are particularly relevant to this comparison of
intron structure because this organism appears to have a
closer evolutionary relationship to G. lamblia than does T.
vaginalis [13]. The variety of differences observed in intron
structure from each of these three organisms seems to fur-
ther differentiate the sequence requirements for the splic-
ing mechanisms employed in these eukaryotic groups.
The identification of homologs of snRNAs in these organ-
isms may give insight and permit comparisons of novel
splicing mechanisms employed in the removal of these
introns, characterized by the above-mentioned conserved
intronic elements and potential branch-point sequences
unusually close to the intron 3' end.

Phylogenetic distribution and properties of the Rpl7a 
intron indicate that it is ancient
Given the phylogenetic conservation of the L7a protein in
the eukaryotic domain, we searched available eukaryotic
genomic databases to determine whether an intron at the
same position as in G. lamblia is conserved in the Rpl7a
gene of other organisms. Somewhat surprisingly, we iden-
tified a conventional spliceosomal intron at exactly the
same position and in the same phase within Rpl7a in
many animal (opisthokont) taxa and in the amoebozoon
Dictyostelium discoideum (Fig. 3). This result, in concert
with the proposed deep branching position of Giardia,
suggested that the Rpl7a intron might be an ancient
eukaryotic spliceosomal intron. Accordingly, we under-
took a more detailed investigation of the occurrence of
this particular intron within the eukaryotic domain. Using
EST sequences available through the Protist EST Program
(PEP), PCR primers were designed to amplify genomic
Rpl7a sequences from a wider array of eukaryotes,
particularly those placed in the controversial taxon Exca-
vata [14]. We identified the Rpl7a intron in three addi-
tional Amoebozoa representatives spanning amoebozoan
diversity [15]. We also found the intron in three addi-
tional groups from Excavata: jakobids, malawimonads
and Trimastix pyriformis (Fig. 3). The intron is variable in
size in these organisms but was only ever found in frame
0 of the coding region. The jakobid Rpl7a introns (541–
988 nt) are the largest characterized to date in this taxon,
notably longer than the 156-nt intron found in the J. libera
β-tubulin gene [16]. The Rpl7a intron is also the first
reported example of an intron from Trimastix, although
other introns have been identified in this organism (A.J.
Roger, pers. comm.). Malawimonas jakobiformis appears to
have two copies of Rpl7a, each containing the intron.
Table 1 summarizes the organisms surveyed for the pres-
ence of the Rpl7a intron.

Within Opisthokonta and Amoebozoa, several groups
appear to lack the Rpl7a intron. Over time introns are ran-
domly lost, so a punctate distribution within established
eukaryotic groups is not unexpected. Independent cases of
intron loss can be inferred when the relationship among
groups is known and the intron is present in a common
ancestor. This is the case for taxa from the Opisthokonta
and the Entamoebidae (amoebozoons) that are missing
the Rpl7a intron. The Rpl7a intron is present in several
amoebozoons that branch outside [15,17] of those that
lack the intron. A particularly interesting case of predicted
intron loss is the Anopheles gambiae Rpl7a [Gen-
Bank:AAAB01008960], which lacks any introns. This
situation is in stark contrast to other hexapod Rpl7a
sequences, which contain introns in addition to the
conserved intron discussed here. The A. gambiae case may
be an example of intron loss mediated by a reverse tran-

An evolutionarily conserved spliceosomal intron within Rpl7a of representative organisms of the domain EucaryaFigure 3
An evolutionarily conserved spliceosomal intron 
within Rpl7a of representative organisms of the 
domain Eucarya. Nucleotide sequences at the exon-intron 
junctions are shown, with the exon sequences in uppercase 
letters and intron sequences in lowercase. The total length of 
each intron is shown above the dotted lines. The conven-
tional spliceosomal intronic boundary sequences are bolded 
(gt...ag). One-letter amino acid abbreviations for the corre-
sponding L7a protein sequences are indicated below the 
exon sequences. Amino acid position within the L7a protein 
is indicated at the bottom of the figure and corresponds to 
the S. cerevisiae sequence, as in Fig. [1]. Sequences from 
NCBI are: D. discoideum [GenBank:AC116100], D. mela-
nogaster [GenBank:X82782]; H. sapiens [GenBank:X52138]; 
and G. lamblia [GenBank:AACB01000019]. Sequences deter-
mined in the present study are: A. castellanii [Gen-
Bank:AY925008]; J. libera [GenBank:AY925006]; T. pyriformis 
[GenBank:AY925011]; M. californianus [GenBank:AY925003].

CCCCTTGAA/ atgt....ccac /CTCGTACTTgt ag

CCAGTTGAA/ aaga....tttt /CTCGTCTTAgt ag

CCCATCGAG/ attt....gctt /CTCGTCGTGgt ag

CCCATCGAG/ actc....ctgc /CTGGTCCTCgt ag

CCCATCGAG/ acgt....tcat /CTCGTCATCgt ag

CCCATTGAG/ acgc....ttgt /TTGGTCATGgt ag

CCCATCGAG/ gcgt....ttcc /CTGGTTGTCgt ag

CCTCTGGAG/ tagt....ttcc /CTGGTGCTCgt ag
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scription mechanism [18,19] and is also consistent with
observed intron loss patterns in the hexapods [20].

None of the examined members of Plantae, Chromalveo-
lata or Rhizaria contained the conserved Rpl7a intron.
Only a single member of Rhizaria (B. natans) was investi-
gated here so it is premature to conclude that the Rpl7a
intron is absent altogether from this supergroup. Our sur-
vey failed to detect the Rpl7a intron in representatives of
the Euglenozoa, Heterolobosea or Parabasalia, all eukary-
otic groups for which inclusion in a larger Excavata assem-
blage is only weakly supported [6]. Whereas emerging
data suggest that E. gracilis is well endowed with spliceo-
somal introns [21-23], intron distribution appears to be
sparse in heteroloboseans [24]. The diplomonad Spironu-
cleus barkhanus does not have the Rpl7a intron, likely a
result of intron loss in this organism given the presence of
the intron in other related Excavata.

We considered other (less probable) explanations that the
phylogenetic distribution of the Rpl7a intron could be
explained by independent events of intron gain or by lat-
eral gene transfers. We note that the Rpl7a exon boundary
sequences conform poorly to the conserved proto-splice
site sequence (A,C)AG/G [25] (Fig. 1 and 3). The pre-
dicted amino acids flanking the intron insertion site are
highly conserved, including in the archaeal homologs,
resulting in a functional constraint on the DNA sequence
abutting the intron. This observation argues against a dis-
tribution of the Rpl7a intron resulting from multiple
intron gains at proto-splice sites. Supporting the argument
against intron gain is the apparent very low density of
introns in G. lamblia. This is also in agreement with recent
data suggesting that few shared intron positions between
distantly related taxa are due to parallel gain (i.e., inde-
pendent insertion) at proto-splice sites [25].

The additional possibility exists that the phylogenetic dis-
tribution of the intron, particularly its presence in G. lam-
blia, could reflect eukaryote-to-eukaryote lateral gene
transfer events. A phylogenetic analysis (see Additional

Table 1: Organisms surveyed for the presence of the Rpl7a 
intron

Organism1 Number2 Intron Size (nt)

With intron:

Opisthokonta (Metazoa only)
Vertebrata (7)

Homo sapiens† 277
Chordata (2)

Ciona intestinalis† 586
Hexapoda (5)

Drosophila melanogaster† 401

Amoebozoa
Dictyostelium discoideum† 492
Physarum polycephalum*† 103
Acanthamoeba castellanii*† 82
Hartmannella vermiformis*† 58

Excavata
Jakobidae

Jakoba libera*† 541
Reclinomonas americana*† 877
Seculamonas ecuadoriensis*† 988

Trimastix (Trimastix pyriformis*†) 172
Malawimonadidae

Malawimonas jakobiformis*† 53, 553

Malawimonas californianus*† 54
Diplomonadida (Giardia lamblia) 109

Without intron:

Chromalveolata
Alveolata (14)
Heterokonta (stramenopiles) (3)

Plantae
Streptophyta (5)
Rhodophyta (2)
Chlorophyta (1)

Rhizaria
Cercozoa (Bigelowiella natans*) (1)

Opisthokonta
Fungi (28)
Nematoda/Trematoda (4)
Hexapoda (1)
Capsaspora owczarzaki*

Amoebozoa
Entamoebidae (4)

Excavata
Heterolobosea (Naegleria gruberi*)
Euglenozoa

Trypanosomatidae (7)
Euglenida (Euglena gracilis*)

Parabasalia (Trichomonas vaginalis)
Diplomonadida (Spironucleus 
barkhanus*)

1An asterisk (*) denotes organisms for which PCR amplification of the 
Rpl7a gene was performed; † indicates that expressed sequence tag 
(EST) data exist that confirm the absence of the intron in the 
corresponding mRNA.
2Numbers in brackets refer to the number of organisms examined 
within each group; a complete list is provided in Additional File 3.
3Two versions of the Rpl7a gene exist in this organism, containing 
introns of slightly different length.

Table 1: Organisms surveyed for the presence of the Rpl7a 
intron (Continued)
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File 2) of L7a protein sequences from 20 representative
eukaryotes and two archaeons does not indicate an obvi-
ous unexpected affinity of G. lamblia with any other
eukaryotic group. Cumulatively, the above observations
argue that the Rpl7a intron is ancestral to many eukaryotic
groupings and has been lost sporadically in various
eukaryotic taxa, in which case the Rpl7a intron would be
one of the oldest introns found to date.

Phylogenetic implications
Depending on one's views of the eukaryotic tree, there are
two possibilities to explain the observed distribution of
the Rpl7a intron with regard to intron loss. In the context
of more recent proposals of a basally unresolved eukaryo-
tic tree [7,26], the Rpl7a intron would have to have been
lost multiple times at the base of Plantae, Chromalveolata
and (tentatively) Rhizaria, but maintained in
Opisthokonta, Amoebozoa and Excavata. Alternatively, if
one assumes a specific relationship among Opisthokonta,
Amoebozoa and Excavata, it is only necessary to invoke a
single loss of the Rpl7a intron in a common ancestor of
Plantae/Chromalveolata/Rhizaria, to explain the appar-
ent absence of this intron in these three supergroups.

While multiple cases of intron gain seem unlikely (as dis-
cussed above), a single intron gain at the base of
Opisthokonta, Amoebozoa and Excavata would result in
the observed distribution, assuming the Plantae/Chroma-
lveolata/Rhizaria had already diverged. While additional
intermediate possibilities exist with regards to various
intron loss and/or gain events, we propose that a single
loss or gain is the most parsimonious explanation for the
observed distribution of the Rpl7a intron, supporting a
grouping of Opisthokonta, Amoebozoa and Excavata.

Although the distribution of the Rpl7a intron does not
position the root of the eukaryotic tree, it may help to
resolve some of the basal branches. It is important to note
that Excavata is a tenuous grouping that may in fact be
polyphyletic: thus, members of Excavata without the
intron may fall on either side of a putative loss/gain event.
In this instance, it is possible that one or more members
of Excavata will be found to group with the Plantae/Chro-
malveolata/Rhizaria consortium. Conversely, if addi-
tional evidence robustly groups the organisms in question
within Excavata, this result would imply that they lost the
intron independently, as is evidently the case for Fungi
within Opisthokonta.

New eukaryotic genome sequences may well reveal the
Rpl7a intron in other representatives of Plantae, Chroma-
lveolata and/or (particularly) Rhizaria than those listed in
Table 1. Although such a finding would necessarily
require reinterpretation of some of the conclusions
reached here, discovery of the Rpl7a intron in these other

eukaryotic supergroups would only strengthen the argu-
ment that this intron is indeed ancient. At present, the
simplest explanation for the observed distribution of the
Rpl7a intron is a specific relationship uniting
Opisthokonta, Amoebozoa and Excavata to the exclusion
of Plantae, Chromalveolata and possibly Rhizaria. How-
ever, additional characters will need to be found in order
to strengthen this proposed assemblage.

Conclusion
The properties possessed by the first identified G. lamblia
spliceosomal-type intron (35 nt in length) raised ques-
tions regarding the importance of its non-canonical 5'
intron boundary and possible constraints on the size of
Giardia introns. Furthermore, it was clear that the identifi-
cation of additional spliceosomal introns would be
required to assess the degree of conservation of predicted
functional sequence elements within these introns [27].
In this study we have identified in G. lamblia two larger
introns (109 and 220 nt) in genes encoding, respectively,
L7a and a non-conserved, unassigned protein. Both of
these newly identified introns exhibit a canonical GT 5'
intron boundary. Evolutionary conservation of the exact
position and phase of the Rpl7a intron (within a highly
conserved region of the L7a protein sequence in members
of diverse eukaryotic groups) indicates that this particular
intron was likely present in the ancestor of these lineages.
The Rpl7a intron exhibits all of the hallmark features of an
ancient intron, such as widespread distribution, phase 0
positioning, location in an ancient eukaryotic gene, and
lack of a proto-splice site sequence; thus, this intron can
be considered to be a meaningful phylogenetic marker.
Currently, no singular genomic marker definitively
resolves the branching order of the eukaryotic super-
groups. We propose that patterns of conservation of
ancient introns, when larger data sets are examined, may
provide such information.

Methods
Genomic DNA
Samples of genomic DNA from various protists (full
organism names are listed in Table 1) were kindly pro-
vided by B.F. Lang (R. americana, ATCC 50394; S. ecuado-
riensis, ATCC 50688; M. jakobiformis, ATCC 50310; M.
californianus, ATCC 50740); A.J. Roger (S. barkhanus strain
NOR-1A, ATCC 50380+; C. owczarzaki, ATCC 30864; T.
pyriformis, ATCC 50562; N. gruberi, ATCC 30224); A.J.
Lohan (A. castellanii, ATCC 30010; H. vermiformis, ATCC
50236); D.F. Spencer (E. gracilis strain Z); and J.M.
Archibald (B. natans, CCMP 621). Genomic DNA from J.
libera (ATCC 50422) and P. polycephalum (strain M3C) was
obtained by lysing cells in 1% SDS followed by phenol
extraction and ethanol precipitation.
Page 7 of 9
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Characterization of Rpl7a sequences
Polymerase chain reaction (PCR) was used to amplify
Rpl7a from genomic DNA (100–200 ng), using Invitrogen
Taq DNA polymerase. PCR primers used are listed in
Additional file 3: Supplemental Tables. PCR cycling con-
ditions were: 3 min at 95°C; 35 cycles of 30 sec at 95°C,
30 sec at 55°, 1 min at 72°C; and 10 min at 72°C. PCR
product bands were isolated from gels using the
Sephaglas™ BandPrep Kit (Amersham Pharmacia Biotech)
and the recovered DNA was cloned into the pCR® 2.1-
TOPO® vector using the TOPO TA Cloning® Kit (Invitro-
gen). DNA sequencing was performed using an auto-
mated ABI Prism 377 DNA sequencer.

Computer analyses
Ribosomal protein L7a gene and protein sequences were
identified by searching relevant sequence databases using
TBLASTN or BLASTP with the S. cerevisiae sequences as
queries. Protein alignments were generated with ClustalX
1.82 [28] applying default alignment parameters. DNASIS
V 2.5 was used for translation of DNA sequences and to
assist in the identification of introns within Rpl7a
sequences. Searches for spliceosomal-like introns within
the preliminary genome sequence data of T. vaginalis and
G. lamblia were performed using the sequence pattern
search program PatScan [11], recompiled with the con-
stant 'MAX_SEQ-LEN' redefined to '100000000'.
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