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Abstract
Background: Plant natriuretic peptides (PNPs) are systemically mobile molecules that regulate homeostasis at
nanomolar concentrations. PNPs are up-regulated under conditions of osmotic stress and PNP-dependent
processes include changes in ion transport and increases of H2O uptake into protoplasts and whole tissue.

Presentation of the hypothesis: The bacterial citrus pathogen Xanthomonas axonopodis pv. Citri str. 306
contains a gene encoding a PNP-like protein. We hypothesise that this bacterial protein can alter plant cell
homeostasis and thus is likely to represent an example of molecular mimicry that enables the pathogen to
manipulate plant responses in order to bring about conditions favourable to the pathogen such as the induced
plant tissue hyper-hydration seen in the wet edged lesions associated with Xanthomonas axonopodis infection.

Testing the hypothesis: We found a Xanthomonas axonopodis PNP-like protein that shares significant sequence
similarity and identical domain organisation with PNPs. We also observed a significant excess of conserved
residues between the two proteins within the domain previously identified as being sufficient to induce biological
activity. Structural modelling predicts identical six stranded double-psi β barrel folds for both proteins thus
supporting the hypothesis of similar modes of action. No significant similarity between the Xanthomonas
axonopodis protein and other bacterial proteins from GenBank was found. Sequence similarity of the Xanthomonas
axonopodis PNP-like protein with the Arabidopsis thaliana PNP (AtPNP-A), shared domain organisation and
incongruent phylogeny suggest that the PNP-gene may have been acquired by the bacteria in an ancient lateral gene
transfer event. Finally, activity of a recombinant Xanthomonas axonopodis protein in plant tissue and changes in
symptoms induced by a Xanthomonas axonopodis mutant with a knocked-out PNP-like gene will be experimental
proof of molecular mimicry.

Implication of the hypothesis: If the hypothesis is true, it could at least in part explain why the citrus pathogen
Xanthomonas campestris that does not contain a PNP-like gene produces dry corky lesions while the closely related
Xanthomonas axonopodis forms lesions with wet edges. It also suggests that genes typically found in the host,
horizontally transferred or heterologous, can help to explain aspects of the physiology of the host-pathogen
interactions.
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Background
Plant natriuretic peptides (PNPs) are a novel class of plant
molecules with biological activity at nanomolar concen-
trations. The PNP-dependent responses include concen-
tration-dependent promotion of stomatal opening [1],
rapid and transient increases in cellular cGMP levels [2]
and modulation of K+, Na+ and H+ net fluxes [3] in Zea
mays root tissue. PNPs also induce rapid increases in
osmoticum-dependant H2O uptake into Solanum tubero-
sum and Arabidopsis thaliana protoplasts [4,5]. We have
also observed PNP-dependant increases in lateral H2O
movement out of the conductive tissue (xylem) into the
neighbouring parenchyma [6] and such a 'drawing' of
water into cells and tissues together with an up-regulation
under conditions of drought and NaCl stress are compat-
ible with a role for these molecules in plant homeostasis.
Incidentally, a PNP-like protein from Citrus jambhiri
(CjBAp12) is expressed in root and stem tissue in
response to a challenge from citrus blight [7] which pro-
liferates in the conductive tissue of the host and severely
affects host homeostasis eventually resulting in xylem
plugging and consequent shoot wilting and host death. It
is conceivable that the expression CjBAp12 is an early host
response to counteract the pathogen induced limitation of
water and nutrient availability.

Several lines of evidence suggest that PNPs can act system-
ically. Firstly, PNPs are associated with conductive tissues
as demonstrated by in situ hybridisation and tissue print-
ing [8]. Secondly, biologically active PNP was isolated
from xylem exudates [8], a tissue that is associated with
transport and not protein synthesis. Amino acid sequence
comparisons and structural modelling predict that PNPs
do not contain the putative polysaccharide-binding C-ter-
minal domain typical for the related expansins that act on
the cell wall [9-11]. The absence of such a domain pre-
sumably results in increased extracellular mobility which
in turn is a precondition for a systemic mode of action.

Here we report the discovery of a gene in the completely
sequenced genome of the plant pathogenic bacterium
Xanthomonas axonopodis [12] that encodes a protein with
significant sequence similarity to an Arabidopsis thaliana
PNP (AtPNP-A) A. We propose that the presence of a PNP-
like protein in Xanthomonas axonopodis has enabled the
pathogen to affect plant homeostasis. Furthermore, we
have investigated the origin of this PNP-like protein
encoding gene in Xanthomonas axonopodis and have found
evidence consistent with the possibility that it has been
acquired by the bacterium through horizontal gene trans-
fer. This has led us to search for other genes that show evi-
dence of horizontal transfer with a view to establishing
how many genes may have been acquired by Xanthomonas
axonopodis through horizontal gene transfer from plants.

Presentation of the hypothesis
We found a PNP-like gene in the bacterial citrus pathogen
Xanthomonas axonopodis pv. Citri str. 306 that has signifi-
cant sequence similarity to the PNP encoding genes and
hypothesise that the encoded protein can alter homeosta-
sis of the host plant. Since PNP-like molecules are
exported into the extracellular space, act systemically and
promote significant ion and H2O uptake into cells it is
very possible that the pathogen uses its PNP-like molecule
to induce cell and tissue hyper-hydration in the host. Such
hyper-hydration is typically seen in the wet rim of the
lesions caused by Xanthomonas axonopodis and may sug-
gest that PNP-like molecule benefits the pathogen by facil-
itating access to water and nutrients while severely
disturbing the homeostasis of its host.

Testing the hypothesis
The closest homologue of the Xanthomonas axonopodis
protein NP_642965.1 that motivated this study was the
Arabidopsis thaliana protein AtPNP-A that we have previ-
ously shown to have an important role in plant homeos-
tasis [13]. The alignment of the two protein sequences
(Figure 1) shows that they are similar in length (AtPNP-A:
126 amino acids; Xanthomonas axonopodis PNP-like pro-
tein: 144 amino acids) and that both contain N-terminal
transmembrane signal peptides to direct the molecules
into the extracellular space, a precondition for a systemic
role. Importantly, the molecules show a significantly
greater amount (p < 0.05 using a Fishers' Exact Test) of
conservation at sites between amino acids 33 and 66 of
AtPNP-A (Figure 1) that we have previously identified as
critical and sufficient for homeostatic function [5]. Within
the entire length the of the domain (Figure 1) the identity
is 36.4%, the similarity is 43.2% and the gaps are 22.7%.

The observed similarity between the two proteins could
be due to an ancient horizontal gene transfer event [14]
from the plants to bacteria or to convergent evolution.
However, we believe that lateral transfer is more likely
because the bacterial and the plant genes also show some
similarity outside of the region that we have shown to be
essential and sufficient for the function of the protein
(Figure 1). This similarity in domains not essential for
osmotic function suggests that the overall similarity
between the two molecules is not just a result of shared
function but reflects common ancestry.

A bootstrapped phylogenetic tree constructed using the
Xanthomonas axonopodis protein NP_642965.1 and its
closest homologues (Figure 2) reveals that, if the bacterial
gene is indeed a product of horizontal gene transfer, the
transfer event is likely to have occurred after the diver-
gence of AtPNP-A from the rest of the expansin protein
family. If indeed a plant is the source of this gene through
horizontal transfer, it is likely to be the result of a
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relatively ancient event because the bacterial protein and
its plant homologue are significantly diverged and satu-
rated at silent sites.

Since common structural features in particular within bio-
logically active and/or catalytic domains can support a
case for common functionality [15], we have undertaken
a structure prediction approach to compare AtPNP-A and
the Xanthomonas axonopodis PNP-like protein. We used
fold recognition methods in a structure prediction
metaserver [16]. The obtained result from FUGUE [17]
which uses structural environment-specific substitution
tables and structure-dependent gap penalties reveals with
certainty (Z score: >5 for AtPNP-A and >10 for the Xan-
thomonas axonopodis PNP-like protein) that both proteins
share the same fold as the N-terminal domain of a Phl P 1
Timothy Grass Pollen Allergen. All the methods in the
server gave consistent top hits for Phl P 1. A homology
model illustrating the overall fold of AtPNP and the Xan-
thomonas axonopodis PNP-like protein was generated using
MODELLER [18] and was based on the crystal structure of
the N-terminal domain of Phl P 1 (Accession No.:
P43213) determined to 2.9 Å (pdb code = 1n10) (Figure

3). MODELLER implements comparative protein struc-
ture modelling by satisfaction of spatial restraints. Fur-
thermore, the structural alignment in FUGE [17] also gave
significant hits (Z score: >4) for both AtPNP-A and the
Xanthomonas axonopodis PNP-like proteins with the barley
wound-induced plant defence protein (Barwin). This pro-
tein is an endoglucanase-like molecule and endoglu-
canses have previously been shown to be related to both
expansins [19,20] and PNP-like molecules [11]. The basic
common fold for these molecules (Figure 3) is a double-
psi β barrel structure where a six-stranded β barrel
assumes a pseudo-twofold axes in which the parallel
strands form two psi structures [21]. The first psi loop con-
nects strands β1 and β2, whereas the second psi loop
connects strands β4 and β5 (Figure 3). In the currently
known structures, the active sites of the protein cluster
around the psi loops indicating that its protrusion and
free main chain functional groups may be well suited to
providing a framework for catalysis [21].

In AtPNP-A and the Xanthomonas axonopodis PNP-like pro-
tein the first psi loop connects strands β1 and β2, whereas
the second psi loop connects strands β4 and β5 (Figure 3).

Alignment of a plant natriuretic peptide from Arabidopsis thaliana  and the plant natriuretic peptide-like protein from Xan-thomonas axonopodisFigure 1
Alignment of a plant natriuretic peptide from Arabidopsis thaliana (AtPNP-A; Accession No. AAD08935) and the plant natriu-
retic peptide-like protein from Xanthomonas axonopodis (Accession No. NP_642965). Solid triangles delineate the domain in 
AtPNP-A that has been shown to be sufficient to induce increased water uptake into plant protoplasts [5]. The gray sequence 
represents the signal peptide and the underlined sequence is the domain spanning the first psi loop. The α helices are marked 
in red, the dotted red line spans an α helix with a 3–10 helix component (between QNG). The β sheets are marked in blue. 
Asterisks (*) identify identical amino acid, colons (:) are conservative amino acid replacements and dots (.) are semi-conserva-
tive amino acid replacements. Arrows (↑) mark conserved cysteines, the open arrow (↑) marks a position where other PNP-
like molecules have a tyrosine or a phenylalanine.
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The sequence conservation between AtPNP-A and the
Xanthomonas axonopodis PNP-like molecule is greatest in
the domain spanning the β2 and β3 strands which both
flank the α helix (Figure 1 and 3). In AtPNP-A this struc-
ture (β2 – α helix – β3) has been demonstrated to be
within the 33 amino acid long domain that is critical and
sufficient for conferring biological activity [5]. This
domain also contains the first psi loop which is likely to
be a part of the functional framework of AtPNP-A and the
Xanthomonas axonopodis PNP-like molecule.

We also carried out a screen of all proteins from Xan-
thomonas axonopodis in order to discover whether other
genes from this bacterial pathogen showed evidence of
unexpected tree topology thus indicating horizontal gene
transfer [14] from plants. All known proteins from the
completely sequenced genomes of Xanthomonas axonopo-
dis [12], Xanthomonas campestris [12], Pseudomonas putida

[22], Escherichia coli [23] and Arabidopsis thaliana [24] were
downloaded from GenBank (13/08/2003). The Xan-
thomonas axonopodis proteins were searched against the
proteins from the remaining four organisms using
BLASTp [25]. CLUSTALW [26] was used to generate mul-
tiple sequence alignments and Neighbour-Joining phylo-
genetic trees from 4307 sets of five proteins consisting of
one protein from each of the five organisms. Xanthomonas
axonopodis proteins with greater than 25% identity to their
Arabidopsis thaliana homologues that clustered with the
Arabidopsis thaliana homologue on a phylogenetic tree
were retained for further analysis. Each of these proteins
was searched against the GenBank non-redundant protein
database. Homologous sequences were downloaded and
phylogenetic trees were constructed using the Neighbor-
Joining method [26].

CLUSTALW [26] was used for the multiple sequence alignment of the full length Xanthomonas axonopodis PNP-like protein and its homologs obtained from BLASTp searches against the NCBI databaseFigure 2
CLUSTALW [26] was used for the multiple sequence alignment of the full length Xanthomonas axonopodis PNP-like protein and 
its homologs obtained from BLASTp searches against the NCBI database. An alignment of 287 amino acids with a score of 
17253 was obtained and after discarding all columns with gaps the alignment length was reduced to 89 amino acids with a score 
of 9705. The Neighbor-Joining tree of the 89 amino acid alignment was constructed using MEGA2 [33]. Bootstrap values are 
shown on the branches and the root was placed at the mid-point of the tree. Sequences are named by abbreviations of the spe-
cies name followed by the NCBI accession number. Abbreviations: At – Arabidopsis thaliana, Ca – Cicer arietium, Cj – Citrus jam-
bhri, Es – Erucastrum strigosum, Gh – Gossypium hirsutum, Hh – Hedera helix, Os – Oryza sativa, Xa – Xanthomonas axonopodis pv. 
Citri str. 306 (in red).
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This approach was used to determine the number of Xan-
thomonas axonopodis genes that showed evidence of hori-
zontal acquisition from plants. The initial screen with the
five completely sequenced organisms returned seven cases
of putative horizontal transfers (Table 1). However, only
two of the proteins (Table 1), NP_642965.1, the subject of
this study, and NP_643621.1 had no significant bacterial
homologs in the NCBI database using the default E-value
cut-off 10. The remaining proteins had bacterial homo-
logues that suggested that they were not likely to have
been acquired through horizontal transfer. The search
indicated that horizontal transfer of genes between plants
and the plant pathogen Xanthomonas axonopodis, if it has
indeed occurred, has been rare.

Recently, another example of a pathogen mimicking an
extracellular plant molecule has been reported [27]. This
protein (GrEXP1), a molecule with cell wall loosening
(expansin) activity previously seen in plants [28] and
other organisms with cell walls only [29], was found in
the plant-parasitic roundworm Globodera rostochiensis. The
infective juvenile nematodes express and secrete GrEXP1

in the subventral oesophageal glands [27] using this 'typ-
ical plant' protein to their advantage when invading the
host root system.

Finally, if the PNP-like gene was indeed horizontally trans-
ferred from a plant to Xanthomonas axonopodis it is also
consistent with the complexity theory of gene transfer [30]
which postulates that a major factor in the more frequent
horizontal transfer of operational genes such as expansins
and PNPs as compared to informational genes is that they
are structurally and functionally less complex. This bias is
explained by the increased chance of transfer of a func-
tional unit advantageous to the recipient. It would also
appear that particularly in the case of a pathogen, extracel-
lular signals, transporters or surface components per-
ceived by the host can cause systemic host responses that
give the pathogen a significant advantage. A point in case
are eukaryotic genes found in Mycobacterium tuberculosis
many of which directly modulate host responses and have
a role in the specific pathogenesis induced by the bacte-
rium [31].

The experimental test of the hypothesis of molecular
mimicry of the Xanthomonas axonopodis PNP-like molecule
will require two types of investigations. In the first, a
recombinant Xanthomonas axonopodis protein must be
obtained and tested for effects on (host) plant tissue.
Molecular mimicry would require that net H2O uptake is
increased and ion transport is affected in the host tissue in
response to the recombinant peptide. In a second experi-
ment, a Xanthomonas axonopodis mutant with a knocked-
out PNP-like gene must be obtained. If the mutant induces
altered host symptoms and in particular an absence of
watery edges of the lesions, then the hypothesis can be
considered proven.

Implications
If the hypothesis is true, then the bacterial PNP-like pro-
tein plays a role in manipulating the homeostatic balance
of the host. Such mimicry could at least in part explain
why the citrus pathogen Xanthomonas campestris that does
not contain a PNP-like gene produces dry corky lesions
while the closely related Xanthomonas axonopodis forms
wet lesions [32]. Furthermore, the hypothesis suggests
that the presence of "typical" and functional host genes in
pathogens can explain key aspects of host-pathogen inter-
actions in general and can help elucidate the specific
molecular and cellular interactions between hosts and
pathogens.
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Modelled fold of a PNP-like molecule showing the six stranded double-psi β barrel structureFigure 3
Modelled fold of a PNP-like molecule showing the six 
stranded double-psi β barrel structure. Fold recognition 
methods predict with certainty (Z score: >5) that AtPNP-A 
and the Xanthomonas axonopodis PNP-like molecule both 
adopt this fold. The N- and C-terminus of the protein are 
indicated, the α-helices are in red, the 6 β-strands are in blue 
and the two protruding psi loops are marked with a solid 
arrow (↑). The open arrows (↑) delineate the 33 amino acid 
long domain critical and sufficient for biological activity [5]. 
The N-terminal signal peptide that is not required for biolog-
ical function outside the cell [5] was not included in the 
model. The model was generated using the software MOLS-
CRIPT [34].
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