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Abstract
Background: Molecular biological techniques are dramatically changing our view of microbial
diversity in almost any environment that has so far been investigated. This study presents a
systematic survey of the microbial diversity associated with a population of Acromyrmex leafcutter
ants. In contrast to previous studies on social insects, which targeted specific groups of symbionts
occurring in the gut (termites, Tetraponera ants) or in specialised cells (Camponotus ants) the
objective of our present study was to do a total screening of all possible micro-organisms that can
be found inside the bodies of these leafcutter ants.

Results: We amplified, cloned and sequenced SSU rRNA encoding gene fragments from 9
microbial groups known to have insect-associated representatives, and show that: (1)
representatives of 5 out of 9 tested groups are present, (2) mostly several strains per group are
present, adding up to a total of 33 different taxa. We present the microbial taxa associated with
Acromymex ants in a phylogenetic context (using sequences from GenBank) to assess and illustrate
to which known microorganisms they are closely related. The observed microbial diversity is
discussed in the light of present knowledge on the evolutionary history of Acromyrmex leafcutter
ants and their known mutualistic and parasitic symbionts.

Conclusions: The major merits of the screening approach documented here is its high sensitivity
and specificity, which allowed us to identify several microorganisms that are promising candidates
for further study of their interactions with Acromyrmex leafcutter ants or their gardens.

Background
Recent trends in microbial ecology reveal that in most ter-
restrial and aquatic ecosystems biodiversity is in large part
microbial. Since the pioneering work of Carl Woese [1]
and Rudolf Amann [2,3], the unraveling of microbial di-
versity and taxonomy no longer depends on conventional
culture-dependent bacteriological methods [4]. In partic-

ular, the use of small subunit ribosomal RNA (SSU rRNA)
encoding sequences has dramatically increased the under-
standing of microbial diversity in a variety of environ-
ments, ranging from plankton communities [5], sewage
plants [6] to geothermal springs [7] and symbiotic associ-
ations with a diversity of hosts (e.g. [8]). When symbionts,
microbes can either be parasites (i.e. be detrimental for
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the survival and reproduction of the host; [9]), or mutual-
ists (i.e. be beneficial to the host; [10]). A clear phyloge-
netic identification of hosts and symbionts is essential to
address detailed questions about interactions, transmis-
sion and coevolution when hosts and symbionts are
known (e.g. [11]). However, the same molecular tools are
also important to identify novel and hitherto unexpected
associations with parasites or mutualists (e.g. [12–14]).
The present study is of the latter type and focuses on a so-
cial insect that is known to have at least two microbial
mutualists and one microbial parasite [15–18].

Both mutualistic and parasitic microbial associates of so-
cial insect hosts face spatially and genetically structured
host populations against which their genotypes are tested
by natural selection. In fact, the distribution of genetic di-
versity across and within colonies is likely to determine in
large part the efficiency of horizontal transmission of
strains between individual hosts [19–21]. In addition,
maternally (vertically) transmitted symbionts may at-
tempt to force their hosts to produce a female biased sex
ratio, thereby enhancing their representation in the next
generation [17,22]. Although these vertically transmitted
symbionts may thus affect the expression and regulation
of reproductive conflict in insect societies, rather little ef-
fort has been undertaken to estimate the total diversity of
microbial associates of social insects. The studies available
today suggest that surveys of this kind are rewarding, be-
cause a number of interesting specific associations be-
tween social insects and microbial symbionts have
recently been discovered and analysed for their co-evolu-
tionary interactions with molecular tools. Examples in-
clude Camponotus wood ant γ-proteobacterial mutualists
[12,13,23,24], Solenopsis fire ant microsporidian parasites

[25,26], diverse honey bee parasites [27–30], and endo-
symbiotic Wolbachia in ants [17,22,31][32][18]. However,
the only social insects where a larger spectrum of taxo-
nomically heterogeneous microbial diversity has been
systematically surveyed with molecular tools are termites,
whose gut communities are now known to harbour a
complex and diverse community with numerous repre-
sentatives of several microbial groups [33–38].

The present study aims to document the total diversity of
microorganisms that can be found within the bodies of
workers of the leaf-cutter ant Acromyrmex octospinosus. To
do this, we have amplified, cloned and sequenced SSU
rRNA encoding sequences representing eight microbial
groups known to have insect-associated representatives,
and one negative control group (Fibrobacter) known to
contain only vertebrate associated ruminal bacteria [39].

Results
Group-specific PCR amplification
No group specific template could be amplified from the
pooled sample in four out of nine tested microbial
groups, including the negative control group Fibrobacter
(Table 1). For these taxa either no representatives are
present, or our methods failed to amplify them. The latter
possibility, however, seems unlikely, since the goup-spe-
cific primer pairs were designed using all known repre-
sentatives in GenBank of the respective groups, and were
tested using several positive controls aimed to represent
the whole diversity of the group in question [40]. For the
other five taxa the group specific PCR results indicated
that at least one representative from each of these groups
is associated with Acromyrmex octospinosus (Table 1).

Table 1: Results of the group specific PCR reactions and characterization of the diversity of symbiont strains in each of the microbial 
taxa

Group (Kingdom) Group specific PCR N clones sequenced N symbiont strains 
present

Microsporidia (EUK) -
Parabasalidea & Diplomonadida (EUK) -
Eumycota – Fungi (EUK) + 41 6
Flavobacteria (EUB) + 44 5
Fibrobacter (EUB) -
Spirochaetes & relatives (EUB) -
Proteobacteria (EUB) + 36 12
Gram pos high GC (EUB) + 26 9
Gram pos low GC (EUB) + 12 1
TOTAL 159 33
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Figure 1
Neighbour joining tree for fungal strains based on partial sequences of the 18S rRNA gene Distances were calcu-
lated using the Kimura 2-parameter in MEGA 2.0. The tree was rooted using the Basidiomycota as an outgroup for their sister
group Ascomycota and vice versa. Bootstrap support values (1000 replicates) over 50% are shown above the branches. Names
of strains are followed by their GenBank accession number. Sequences generated in this study are indicated on black back-
ground.
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Figure 2
Neighbour joining tree for proteobacterial strains based on partial sequences of the 16S rRNA gene The tree
was rooted using Fibrobacter sp. (EMBL L35548) as an outgroup sequence. See legend of Fig. 1 for further details.
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Figure 3
Neighbour joining tree for Gram positive bacteria with high G+C content based on partial sequences of the
16S rRNA gene The tree was rooted using Fusobacterium equorum (EMBL AJ295750) as an outgroup sequence. See legend of
Fig. 1 for further details.
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Acromyrmex octospinosus microbial associates in a phylo-
genetic context
Cloning and sequencing of these amplification products
revealed that the Gram positive bacteria with low GC con-
tent were represented by a single sequence but that a het-
erogeneous template was amplified in the other group
specific PCR's (Table 1). Differences smaller than 1% se-
quence divergence were assumed to be due to Taq
polymerase reading errors and a consensus sequence was
calculated for these groups of similar sequences. This pro-
cedure generated a total of 33 different bacterial strains as-
sociated with A. octospinosus (Table 1).

One of the six identified fungal clones (Fig 1) clustered
within a monophyletic group of Basidiomycota including
all known garden symbionts of fungus growing ants. This
sequence was retrieved 15 times in a total of 41 sequenced
clones. A second basidiomycotal sequence clustered with
the plant pathogen Rhizoctonia solani but is only distantly
related to it. Among the Ascomycota associated with A.
octospinosus, we found a Cordyceps sp., a relative of the
plant pathogen Didymella, and a more distant relative of
the human pathogen Fonsecaea.

A total of 12 strains belonged to the Proteobacteria (Fig
2). Among these, 5 strains clustered within the α-proteo-

bacterial genus Wolbachia. Two other α-Proteobacteria
were present, one closely related to the freshwater bacteri-
um Caulobacter sp., the other falling within the family
Rhizobiaceae. A last group of 5 sequences is closely related
to the γ-proteobacterial pathogen Escherichia coli.

A total of nine strains of Gram-positive bacteria with high
G+C content (Fig 3) was identified, all belonging to the
Actinomycetales: superfamilies Pseudonocardinae (4
strains), Propionibacterina (3 strains), and Micrococcinae
(2 strains). The single sequence belonging to the Gram-
positive bacteria with low G+C content clustered within
the insect pathogenic family Entomoplasmataceae (Fig 4)
and five flavobacterial strains clustered together with var-
ious representatives of the Flexibacter and Flavobacterium
group, none of which are known associates of insects.

Discussion
It is difficult to predict the fitness effects of an associated
microorganism (i.e. wheter it is a mutualist, a parasite, or
just a commensal or ingested food item) from its phyloge-
netic affiliation. Closely related microorganisms often re-
side in a totally different ecological niche (eg. Bartonella
pathogenic proteobacteria are closely related to root nod-
ulating Rhizobiaceae, [41]. Only in some cases, where a
complete monophyletic group of microorganisms has a

Figure 4
Neighbour joining tree for Gram positive bacteria with low G+C content based on partial sequences of the 16S
rRNA gene The tree was rooted using Bacillus subtilis (EMBL AB065370). See legend of Fig. 1 for further details.
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similar life style, reasonable predictions can be made
about the fitness effects of additional microbes clustering
within such groups. Possible examples in this study in-
clude: (1) A subset of five proteobacterial strains clearly
clustering within the Wolbachia group of reproductive par-
asites of arthropods (Fig 2). Wolbachia is a maternally
transmitted bacterium that manipulates the reproduction
of its arthropod host [42–44]. These bacteria often force
their hosts to produce broods of mostly female offspring,
the sex that maximises Wolbachia transmission due to its
exclusively maternal inheritance. Wolbachia infections are
present in more than half of the ant species studied so far,
but are unusually diverse in the leafcutter ants
[17,18,22,45,46]. (2) A second case where the phylogeny
is informative concerns the fungal strain that clusters
within a group of Cordyceps and Beauveria entomopatho-
gens (Fig. 1). Cordyceps species are known to infect a vari-

ety of insects [47] and can have severe mortality and
morbidity consequences for ant hosts [48,49]. A small
subset of Cordyceps species jumped to truffles hosts instead
of insects [47], but all known Cordyceps species are viru-
lent and mostly obligatory pathogens. Since all Cordyceps
have an obligatory and potentially virulent parasitic life
history, the most parsimonous assumpion is that new
fungi clustering within this group are also parasitic. Sec-
ondary loss of a parasitic life might have occurred but
would require numerous adaptations, since the biology of
these microorganisms is evolutionary tuned to be parasit-
ic. We also sequenced an 18S rRNA gene fragment of a
Cordyceps fruiting body from a Camponotus atriceps worker
that was found in the same sampling site (Fig 1). Al-
though horizontal transmission of Cordyceps has been
documented before [47], we did not find any evidence for
horizontal transmission. The Cordyceps originating from

Figure 5
Neighbour joining tree for flavobacterial strains based on partial sequences of the 16S rRNA gene The tree was
rooted using Nitrospira sp. (EMBL AJ224046) as an outgroup sequence. See legend of Fig. 1 for further details.
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Camponotus was not more closely to the one found in A.
octospinosus than those from hosts in other environments,
indicating that there is no link between proximity and re-
latedness of infecting strains. (3) The single Gram positive
bacterium with high GC content we found in A. octospino-
sus, clusters with sequences representing the genera Ento-
moplasma and Mesoplasma (Fig 4), both of which consist
mostly of insect associated parasites [50,51]. It is therefore
also in this case very likely that the strain we found in A.
octospinosus is also a parasite. (4) A total of 15 clones were
almost identical in sequence and clustered with the Leuco-
agaricus garden symbionts cultivated as a major food re-
source by other Attine ants [52,53]. This implies that
fragments of the Acromyrmex octospinosus mutualistic fun-
gus were present as food particles in the ant guts. As a con-
sequence, our PCR's are also likely to have amplified other
microorganisms that occur in the fungus garden.

For the remaining sequences isolated in this study, no SSU
rRNA sequences are currently present in Genbank that
give a clear idea about their effects in Acromyrmex octos-
pinosus. They may be just neutral passengers in the gut, or
they may be parasites or mutualists for which the rRNA
genes of closely related symbionts have not yet been deter-
mined. These bacterial associates with unclear effect in-
clude: (1) two of the fungal sequences having plant
pathogens (resp. Didymella and Rhizoctonia) among their
closest relatives. If the clustering of these fungi within
plant pathogenic taxa remains stable when more sequenc-
es become available through GenBank (which is not cer-
tain given the considerable distances to their currently
known closest relatives), the most probable explanation
for their occurrence inside the ants is that they are passen-
gers and food in the gut, originating from harvested plant
material. The last fungal associate, related to the human
skin pathogen Fonseceae pedrosoi leaves us no clue as to its
effects on the ants. We are almost certain that this is not a
artifact, as all laboratory work was done under a laminar
flow hood and wearing gloves and because this microor-
ganism was not retrieved in the analysis of the Camponotus
tissue. (2) Of the remaining proteobacteria, the distant
relative of the water bacterium Caulobacter may be another
environmental contaminant, as this bacterium belongs to
the Rhizobiaceae, which are almost all plant symbionts
[54]. Other Rhizobiaceae have been described as symbi-
onts of the ant Tetraponera binghami[14], but only in asso-
ciation with a specialized organ for nitrogen recycling,
which is not present in leafcutter ants. The E. coli relatives
(assuming a stable clustering near E. coli) are most proba-
bly mild gut parasites, as this lifestyle is typical for the ge-
nus Escherichia[55]. A close relative, E. blattae has been
described from the gut of a cockroach [56], confirming
that insects can be hosts of these bacteria. Unfortunately,
the SSU rRNA gene of E. blattae has not been sequenced
yet, so that we cannot determine how our sequences relate

to it. (3) Several of the nine Actinomycetal associates of A.
octospinosus are related to soil bacteria. These may be nui-
sances removed from the nest and carried by the ants in
their infrabuccal pocket. As no phylogenetically conserved
lifestyles seem to exist in this group of bacteria, however,
they may equally well be genuine mutualists or pathogens
harboured by the ants. Some actinomycetes have been de-
scribed that reside on these ants' cuticle and produce an
antibiotic against garden pests [15,16]. None of the se-
quences we isolated in this study, however, were closely
related to these cuticular symbionts (C. Currie, pers.
comm.). All other known insect-associated actinomycetes
(gut associates of Culex mosquitos, [57], and of termites,
[58] belong to the Streptomycetinae, a subfamily to which
none of our sequences belongs. In conclusion, from the
information currently present we cannot say what effect
the isolated actinomycete strains may have on A. octos-
pinosus. (4) The relatives of the five identified Flavobacte-
ria come from diverse environments and leave us no idea
about the possible effect of the identified strains. Most of
the related Genbank Flavobacteria were actually isolated
from water or soil samples, so that we cannot exclude that
some of our sequences were contaminants from nest par-
ticles that were stored in the infrabuccal pockets of the
ants.

We did not amplify any DNA sequences using primers de-
signed to target Microsporidia, Parabasalidea and Diplo-
monadidae, Spirochetes and Fibrobacter. Known
microsporidian insect associates include Thelohania and
Vairimorpha parasites of fire ants [26,59,60], Nosema spp.
parasitising numerous bee species and a variety of termite
associates (reviewed in [61]). Several hindgut symbionts
of termites belong to the Parabasalidea [33] and the Spi-
rochetes [33]. The absence of any bacteria from the latter
Fibrobacter control group, which is known to contain only
ruminal bacteria [39], is an extra confirmation of the spe-
cificity of our primer sets [40]. The absence of any repre-
sentative of these groups is unlikely to be a technical
artifact since the group-specific primer pairs were de-
signed using all known representatives in GenBank of the
respective groups and given the elaborate amplification
tests using several positive controls per group in Van Borm
and Boomsma (2002). Our analysis thus suggests that
three groups known to contain insect-associated microor-
ganism are lacking or very rare (below the detection
threshold), so that they are unlikely to be important in the
investigated population of Acromyrmex octospinosus.

Conclusions
The major merits of the screening approach documented
here is its high sensitivity and specificity, which allowed
us to identify several microorganisms that are promising
candidates for further study of their interactions with Ac-
romyrmex leafcutter ants or their gardens. However, a dis-
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advantage associated with the sensitivity of our approach
is the co-amplification of a number of microorganisms
that may be nothing more than food or biologically irrel-
evant gut passengers. Further research, including microor-
ganism-specific PCR screenings and in situ hybridisation
will be needed to clarify the importance of the microor-
ganisms found in this study for the functioning of the ant-
fungus symbiosis.

Materials and Methods
Sampling and DNA extraction
Workers of 14 colonies of Acromyrmex octospinosus were
collected in Gamboa, Panama in April 2000, and pre-
served in 95% ethanol. The sampled colonies included
AO101, AO103, AO104 (only 3 small workers sampled),
AO107, AO108, AO110, AO115, AO116, AO117,
AO120, AO121, AO122, AO127, and AO130 (voucher
specimens of workers from these colonies were deposited
in the collection of the Lab. of Entomology, K.U. Leuven).
To minimise the risk of cross-contamination, the pre-ex-
traction treatment and all DNA extraction procedures
were performed in a laminar flow hood under sterile con-
ditions. Nine workers (3 small workers, 3 medium sized
workers, and 3 large workers) of each colony were exter-
nally sterilised by immersion in 70% ethanol, followed by
two rinses in double distilled water and exposure for 2 h
to UV radiation (250 nm). The entire ants were subse-
quently ground after freezing in liquid nitrogen, and their
DNA was extracted by 3 h incubation at 55°C and 20 min
boiling in 500 µl of an auto-claved 10 % Biorad Chelex
100 resin solution. The resulting extract thus contained
DNA from all microorganisms within the ant's body (i.e.
not only parasites and symbionts, but also food and mi-
cro-organisms in the gut). To sample the total microbial
diversity of the studied population, 5 µl of each of the 120
(9 workers sampled from 13 colonies + 3 workers sam-
pled from 1 colony) individual extracts was taken and
joined in a pooled sample. All samples were centrifuged
and stored at -20°C until use.

Group-specific amplification of SSU rDNA
SSU ribosomal RNA encoding sequences were specifically
amplified for 9 microbial groups (9) using the primer
pairs, control templates, and conditions identified by Van
Borm and Boomsma [40]. Primer information will be
available on request from the authors. For each reaction,
10 µl of the amplification product was electophorised to-
gether with a 100 bp length standard on 1% agarose mini-
gels. For groups that yielded a positive result (meaning
that at least one representative of the group was present in
our pooled sample), the group-specific band was excised
from the agarose gel and DNA was extracted from the gel
fragment (GFX™ PCR DNA and Gel Band Purification Kit,
Amersham Pharmacia Biotech Inc.).

Cloning
The purified PCR amplification products were subse-
quently ligated into a pCR®2.1-TOPO vector (Invitrogen
Topo™ TA Cloning Kit). The vectors were transformed in
chemically competent E. coli cells (Invitrogen Topo™ TA
Cloning Kit), plated on selective agar plates containing
ampicillin and incubated overnight at 37°C. The resulting
clones were suspended in 50 µl double distilled water.
Positive transformants were determined by PCR, using
primers M13F (5' GTA AAA CGA CGG CCA G 3') and
M13R (5' CAG GAA ACA GCT ATG AC 3') provided by the
manufacturer. PCR amplification reactions were carried
out in 25 µl reaction mixtures containing 0.8 µM of each
primer, 0.2 mM of each dNTP, 1.5 mM MgCl2, 1 µl of the
suspended clone, 0.3 U of Taq DNA polymerase (Ampli-
Taq, Perkin Elmer Cetus) and PCR buffer specified by the
manufacturer. PCR was performed with an initial denatur-
ation at 97°C for 5 min, followed by 30 cycles consisting
of 95°C for 30 sec, 60°C for 45 sec and 72°C for 1 min,
and a final extension at 72°C for 10 min.

Sequencing
DNA was purified from the M13-PCR product (GFX™ PCR
DNA and Gel Band Purification Kit, Amersham Pharma-
cia Biotech Inc.). The number of clones sequenced for
each of the groups is given in Table 1. Sequencing reac-
tions contained 4 pmol of each IRD (infrared-dye)-la-
belled M13 primer, 5 U of SequiTherm Excel™II DNA
polymerase (Epicentre Technologies) and buffer pre-
scribed by the manufacturer. The PCR reaction was per-
formed with an initial denaturation at 95°C for 5 min,
followed by 30 cycles of 95°C for 30 sec, 55°C for 15 sec
and 70°C for 1 min, and a final extension at 70°C for 10
min. Subsequently, reactions were transferred to a Poly-
acrylamide gel in a LI-COR® automated sequencer.

Phylogenetic analysis
The partial SSU rDNA sequences of each microbial group
were aligned using the CLUSTAL W program [62] fol-
lowed by manual refinements. The two closest relatives of
each sequence found in a BLAST similarity search and sev-
eral representative species found in Genbank [63] were in-
cluded in the alignments. Using the MEGA2.0 software
[64], a neighbour-joining tree was calculated for each
group from a Kimura 2-parameter based distance matrix
with pairwise deletion of insertions and deletions. Boot-
strap analysis testing the reliability of the clades in the
phylogeny included 1000 pseudoreplications. Each tree
was rooted using an outgroup sequence (see figures for
details), except for the Fungi where the tree was rooted us-
ing the Basidiomycota group as a sister group of the Asco-
mycota.
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